Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 247 entries in the Bibliography.


Showing entries from 1 through 50


2022

The investigation on daytime conjugate hemispheric asymmetry along 100°E longitude using observations and model simulations: New insights

The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, as the month-to-month variations are found to provide intricate details. The anomaly at the conjugate stations is highly asymmetric even during the equinoctial months of March and October, whereas it is nearly symmetric during April. During June/July, the morning time hemispheric asymmetry (larger on the winter side) temporarily reduces in the midday period and then reverses sign (larger in summer) in the afternoon. The NmF2 observations suggest a close relation of hemispheric symmetry to the position of the subsolar point with respect to the dip equator and a shift/expansion of the trough region of the EIA towards the summer hemisphere. The inter-hemispheric comparison of the hmF2 suggests a strong modulating influence of meridional winds at both the inner and outer stations which depend strongly on the relative position of the subsolar point with respect to the field line geometry. Theoretical (SAMI3/SAMI2) and empirical model (IRI) simulations show a meridional movement of the EIA region with the subsolar point. The winter to summer hemisphere movement of the EIA trough and crest region is also reproduced in the GIM-TEC along 100°E for 2015. This shifting or tailoring of the trough and the crest region is attributed primarily to the meridional wind field, which varies with the shifting position of subsolar point relative to the field line geometry. The seasonal and intra-seasonal difference in the NmF2 hemispheric asymmetry is attributed to the misalignment of the two centers of power viz., the thermospheric/neutral processes and the electromagnetic forces, due to the geographic-geomagnetic offset in this longitude.

Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.;

Published by: Advances in Space Research      Published on: may

YEAR: 2022     DOI: 10.1016/j.asr.2022.02.058

NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar

Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite

\textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater Lyman–Birge–Hopfield (LBH) emissions in the dayside thermosphere that can be used to invert the peak electron density of the F\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater layer (NmF\textlessspan class="inline-formula"\textgreater$_\textrm2$)\textless/span\textgreater at night and the \textlessspan class="inline-formula"\textgreater\textlessmath xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"\textgreater\textlessmrow class="chem"\textgreater\textlessmi mathvariant="normal"\textgreaterO\textless/mi\textgreater\textlessmo\textgreater/\textless/mo\textgreater\textlessmi mathvariant="normal"\textgreaterN\textless/mi\textgreater\textless/mrow\textgreater\textless/math\textgreater\textlessspan\textgreater\textlesssvg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="73a3f14187048fa14eee70dd1027ad23"\textgreater\textlesssvg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-1577-2022-ie00001.svg" width="25pt" height="14pt" src="amt-15-1577-2022-ie00001.png"/\textgreater\textless/svg:svg\textgreater\textless/span\textgreater\textless/span\textgreater\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater ratio in the daytime, respectively. Preliminary observations show that the IPM could monitor the global structure of the equatorial ionization anomaly (EIA) structure around 02:00 LT using atomic oxygen (OI) 135.6 nm nightglow. It could also identify the reduction of \textlessspan class="inline-formula"\textgreater\textlessmath xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"\textgreater\textlessmrow class="chem"\textgreater\textlessmi mathvariant="normal"\textgreaterO\textless/mi\textgreater\textlessmo\textgreater/\textless/mo\textgreater\textlessmi mathvariant="normal"\textgreaterN\textless/mi\textgreater\textless/mrow\textgreater\textless/math\textgreater\textlessspan\textgreater\textlesssvg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7662cd64e23809d534f2b5721e55261b"\textgreater\textlesssvg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-1577-2022-ie00002.svg" width="25pt" height="14pt" src="amt-15-1577-2022-ie00002.png"/\textgreater\textless/svg:svg\textgreater\textless/span\textgreater\textless/span\textgreater\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater in the high-latitude region during the geomagnetic storm of 26 August 2018. The IPM-derived NmF\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater agrees well with that observed by four ionosonde stations along 120\textlessspan class="inline-formula"\textgreater$^\textrm∘$\textless/span\textgreater E with a standard deviation of 26.67 \%. Initial results demonstrate that the performance of IPM meets the design requirements and therefore can be used to study the thermosphere and ionosphere in the future.\textless/p\textgreater

Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian;

Published by: Atmospheric Measurement Techniques      Published on: mar

YEAR: 2022     DOI: 10.5194/amt-15-1577-2022

Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite

\textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater Lyman–Birge–Hopfield (LBH) emissions in the dayside thermosphere that can be used to invert the peak electron density of the F\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater layer (NmF\textlessspan class="inline-formula"\textgreater$_\textrm2$)\textless/span\textgreater at night and the \textlessspan class="inline-formula"\textgreater\textlessmath xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"\textgreater\textlessmrow class="chem"\textgreater\textlessmi mathvariant="normal"\textgreaterO\textless/mi\textgreater\textlessmo\textgreater/\textless/mo\textgreater\textlessmi mathvariant="normal"\textgreaterN\textless/mi\textgreater\textless/mrow\textgreater\textless/math\textgreater\textlessspan\textgreater\textlesssvg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="73a3f14187048fa14eee70dd1027ad23"\textgreater\textlesssvg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-1577-2022-ie00001.svg" width="25pt" height="14pt" src="amt-15-1577-2022-ie00001.png"/\textgreater\textless/svg:svg\textgreater\textless/span\textgreater\textless/span\textgreater\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater ratio in the daytime, respectively. Preliminary observations show that the IPM could monitor the global structure of the equatorial ionization anomaly (EIA) structure around 02:00 LT using atomic oxygen (OI) 135.6 nm nightglow. It could also identify the reduction of \textlessspan class="inline-formula"\textgreater\textlessmath xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"\textgreater\textlessmrow class="chem"\textgreater\textlessmi mathvariant="normal"\textgreaterO\textless/mi\textgreater\textlessmo\textgreater/\textless/mo\textgreater\textlessmi mathvariant="normal"\textgreaterN\textless/mi\textgreater\textless/mrow\textgreater\textless/math\textgreater\textlessspan\textgreater\textlesssvg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7662cd64e23809d534f2b5721e55261b"\textgreater\textlesssvg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-1577-2022-ie00002.svg" width="25pt" height="14pt" src="amt-15-1577-2022-ie00002.png"/\textgreater\textless/svg:svg\textgreater\textless/span\textgreater\textless/span\textgreater\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater in the high-latitude region during the geomagnetic storm of 26 August 2018. The IPM-derived NmF\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater agrees well with that observed by four ionosonde stations along 120\textlessspan class="inline-formula"\textgreater$^\textrm∘$\textless/span\textgreater E with a standard deviation of 26.67 \%. Initial results demonstrate that the performance of IPM meets the design requirements and therefore can be used to study the thermosphere and ionosphere in the future.\textless/p\textgreater

Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian;

Published by: Atmospheric Measurement Techniques      Published on: mar

YEAR: 2022     DOI: 10.5194/amt-15-1577-2022

Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme

In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (\textless 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus.

Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro;

Published by: Experimental Astronomy      Published on: mar

YEAR: 2022     DOI: 10.1007/s10686-022-09846-9

Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050

Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme

In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (\textless 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus.

Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro;

Published by: Experimental Astronomy      Published on: mar

YEAR: 2022     DOI: 10.1007/s10686-022-09846-9

Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050

High and mid latitude and near subsolar point ionospheric and thermospheric responses to the solar flares and geomagnetic storms during low solar activity periods of 2017 and 2020

The paper observes the super-imposed effects of intense and moderate solar flares and Coronal Mass Ejection (CME) and High Speed Solar Wind (HSSW) driven geomagnetic storm events on the ionosphere and thermosphere at mid and high latitudes during low solar activity periods. The observations are conducted over a fixed longitude (∼117°W geographic) during May 27–31, 2017 (duration with intense geomagnetic storm without any significant solar flare event), September 3–6, 2017 (duration with solar flare events), September 7–16, 2017 (duration with intense to moderate solar flares as well as geomagnetic storms) and November 28–30, 2020 (duration with a moderate solar flare event with no geomagnetic storm in association). It is found that the effects were the highest during May 27–31, 2017 among all of these events. From the observations of super-imposed effects of the geophysical events, it was found that the effects of an X-class solar flare on September 10–12, 2017 on mid-latitude ionization were suppressed by the Disturbed Dynamo Electric Field (DDEF) from high latitudes during the recovery phase of an intense CME driven geomagnetic storm. The weak effects were also explained by the position of origination of the flare at the Sun. Correlations were observed between the variations in O/N2, neutral wind velocities and the mid and high latitude Total Electron Content (TEC) during these periods. Possible explanation is given for those few cases (for example, September 14, 2017) when the variations in O/N2 mismatched with the local TEC especially in the mid-latitudes. The effects of the solar flare event on November 28–30, 2020 which were short-lived have also been also observed at locations near the subsolar point from low latitudes in the southern hemisphere.

Sur, Dibyendu; Ray, Sarbani; Paul, Ashik;

Published by: Advances in Space Research      Published on: jul

YEAR: 2022     DOI: 10.1016/j.asr.2022.04.024

CME driven storms; HSSW driven storms; Joule heating; O/N ratio; Plasmaspheric contributions; Solar flare

Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017

The variations of neutral temperature in the mesosphere and lower thermosphere (MLT) region, during the 7–8 September 2017 intense geomagnetic storm, are studied using observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. They are also studied using simulations by the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM). The neutral temperature data cover the altitudes from 80 km to 110 km between 83° N and 52° S latitude, obtained from both SABER observations and model simulations. The SABER observations reveal that temperature increases (the maximum increase is larger than 35 K at \textasciitilde108 km) and decreases (the maximum decrease is larger than 20 K at \textasciitilde105 km) during the geomagnetic storm. The storm effects penetrate down to \textasciitilde80 km. In observations, temperature variations corresponding to the storm show hemispheric asymmetry. That is, the variations of temperature are more prominent in the northern hemisphere than in the southern hemisphere. Conversely, the TIMEGCM outputs agree with the observations in general but overestimate the temperature increases and underestimate the temperature decreases at high and middle latitudes. Meanwhile, the simulations show stronger temperature decreases and weaker temperature increases than observations at low latitudes. After analyzing the temperature variations, we suggest that vertical winds may play an important role in inducing these significant variations of temperature in the MLT region.

Sun, Meng; Li, Zheng; Li, Jingyuan; Lu, Jianyong; Gu, Chunli; Zhu, Mengbin; Tian, Yufeng;

Published by: Universe      Published on: feb

YEAR: 2022     DOI: 10.3390/universe8020096

geomagnetic storm; temperature; the mesosphere and lower thermosphere (MLT); TIMEGCM

Investigation of the negative ionospheric response of the 8 September 2017 geomagnetic storm over the European sector

In this study, we investigate the negative ionospheric response over the European sector during two storms that took place on 8 September 2017, primarily, by exploiting observations over ten European locations. The spatial and temporal variations of TEC, foF2 and hmF2 ionospheric characteristics are examined with the aim to explain the physical mechanisms underlying the strong negative ionospheric response. We detected very sharp electron density (in terms of foF2 and TEC) decrease during the main phases of the two storms and we attributed this phenomenon to the large displacement of the Midlatitude Ionospheric Trough (MIT). Our study also revealed that the two storms show different features caused by different processes. In addition, Large Scale Traveling Ionospheric Disturbances (LSTIDs) were observed during both storms, followed by enhanced Spread F conditions over Digisonde stations. The regional dependence of ionospheric storm effects was demonstrated, as the behavior of ionospheric effects over the northern part of Europe differed from that over the southern part.

Oikonomou, Christina; Haralambous, Haris; Paul, Ashik; Ray, Sarbany; Alfonsi, Lucilla; Cesaroni, Claudio; Sur, Dibyendu;

Published by: Advances in Space Research      Published on: aug

YEAR: 2022     DOI: 10.1016/j.asr.2022.05.035

Large-scale traveling ionospheric disturbances; Mid-latitude ionospheric trough; September 2017 geomagnetic storm; Swarm satellite

Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015

Using observations by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on board the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) satellite and simulations by the TIEGCM (Thermosphere-Ionosphere-Electrodynamics General Circulation Model), we investigate the daytime variations of thermospheric nitric oxide (NO) cooling during the geomagnetic storm on 6 May 2015. The geomagnetic storm was minor, as the minimum Dst was −28 nT, the maximum Kp was 5+ and the maximum AE was 1259 nT. However, significant enhancements of peak NO cooling rate and prominent decreases in the peak NO cooling altitude were observed from high latitudes to low latitudes in both hemispheres on the dayside by the SABER instrument. The model simulations underestimate the response of peak NO cooling and have no significant variation of the altitude of peak NO cooling rate on the dayside during this minor geomagnetic storm. By investigating the temporal and latitudinal variations of vertical NO cooling profiles inferred from SABER data, we suggest that the horizontal equatorward winds caused by the minor geomagnetic storm were unexpectedly strong and thus play an important role in inducing these significant daytime NO cooling variations.

Li, Zheng; Sun, Meng; Li, Jingyuan; Zhang, Kedeng; Zhang, Hua; Xu, Xiaojun; Zhao, Xinhua;

Published by: Universe      Published on: apr

YEAR: 2022     DOI: 10.3390/universe8040236

geomagnetic storm; thermosphere; nitric oxide cooling

Satellite In Situ Electron Density Observations of the Midlatitude Storm Enhanced Density on the Noon Meridional Plane in the F Region During the 20 November 2003 Magnetic Storm

Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite-borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar-orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED s life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross-polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement.

Lin, Chin; Sutton, Eric; Wang, Wenbin; Cai, Xuguang; Liu, Guiping; Henney, Carl; Cooke, David;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029831

in situ plasma density; ionospheric electron density; prompt penetration electric field; Storm enhanced density; tongue of ionization

Assimilative Mapping of Auroral Electron Energy Flux Using SSUSI Lyman-Birge-Hopfield (LBH) Emissions

Far ultraviolet (FUV) imaging of the aurora from space provides great insight into the dynamic coupling of the atmosphere, ionosphere, and magnetosphere on global scales. To gain a quantitative understanding of these coupling processes, the global distribution of auroral energy flux is required, but the inversion of FUV emission to derive precipitating auroral particles energy flux is not straightforward. Furthermore, the spatial coverage of FUV imaging from Low Earth Orbit (LEO) altitudes is often insufficient to achieve global mapping of this important parameter. This study seeks to fill these gaps left by the current geospace observing system using a combination of data assimilation and machine learning techniques. Specifically, this paper presents a new data-driven modeling approach to create instantaneous, global assimilative mappings of auroral electron total energy flux from Lyman-Birge-Hopfield (LBH) emission data from the Defense Meteorological System Program (DMSP) Special Sensor Ultraviolet Spectrographic Imager (SSUSI). We take a two-step approach; the creation of assimilative maps of LBH emission using optimal interpolation, followed by the conversion to energy flux using a neural network model trained with conjunction observations of in-situ auroral particles and LBH emission from the DMSP Special Sensor J and SSUSI instruments. The paper demonstrates the feasibility of this approach with a model prototype built with DMSP data from 17 February 2014 to 23 February 2014. This study serves as a blueprint for a future comprehensive data-driven model of auroral energy flux that is complementary to traditional inversion techniques to take advantage of FUV imaging from LEO platforms for global assimilative mapping of auroral energy flux.

Li, J.; Matsuo, T.; Kilcommons, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029739

The origin of midlatitude plasma depletions detected during the 12 February 2000 and 29 October 2003 geomagnetic storms

Kil, Hyosub; Chang, Hyeyeon; Lee, Woo; Paxton, Larry; Sun, Andrew; Lee, Jiyun;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI:

Diurnal and Seasonal Characteristics of the Longitudinal Variations of Electron Densities in the Topside Ionosphere at Middle Latitudes

The ionosphere experiences strong diurnal and seasonal changes. The longitudinal variations of electron density (Ne) in the ionosphere at the middle latitudes also show strong diurnal and seasonal changes. In this paper, we use in situ Ne measurements from the DEMETER satellite and electron density profiles retrieved from the COSMIC data to study the local time (LT) and seasonal dependence of the longitudinal variations of topside Ne at middle latitudes during 2007–2009. With regard to the diurnal trend, the reversal phase of longitudinal peaks/valleys of topside Ne with a 12 hr interval occurred in less than half of the cases, and there were less cases with eastward phase shift of the longitudinal variations of topside Ne with LT in winter than those in other seasons. The seasonal trends of transition longitudes of topside Ne might be westward from winter to summer and eastward from summer to winter in the daytime and in the opposite direction at night in both hemispheres in some cases and sometimes they were located within 20° of longitude at 52°N in other cases. The longitudinal peaks/valleys of hmF2 and/or NmF2 and the longitudinal peaks/valleys of topside Ne were within 30° of longitude in most cases at all local times, in all seasons, and in both hemispheres. Exceptions to this were independent of season or LT.

Su, Fanfan; Wang, Wenbin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030308

Electron density; middle latitude; season; topside ionosphere

Ionospheric Disturbances in Low- and Midlatitudes During the Geomagnetic Storm on 26 August 2018

Plasma density depletions at midlatitudes during geomagnetic storms are often understood in terms of equatorial plasma bubbles (EPBs) due to their morphological similarity. However, our study reports the observations that reveal the generation of plasma depletions at midlatitudes by local sources. During the geomagnetic storm on 26 August 2018, the Defense Meteorological Satellite Program and Swarm satellites detected plasma depletions at midlatitudes in the Asian sector in the absence of EPBs in the equatorial region. This observation and the total electron content (TEC) maps over Japan demonstrate that traveling ionospheric disturbances (TIDs) are the sources of midlatitude plasma depletions in the Asian sector. Near the west coast of the United States, the development of a narrow TEC depletion band was identified from TEC maps. The TEC depletion band, which is elongated in the northwest–southeast direction, moves toward the west with a velocity of approximately 240 m/s. The TEC at the TEC depletion band is about 5 TEC units (1016 m−2) smaller than the ambient TEC. As this band is confined to the midlatitudes, this phenomenon is not associated with an EPB. The characteristics of the TEC depletion band are consistent with those of medium-scale TIDs. Observations in the Asian sector and the TEC depletion band over the United States demonstrate that plasma depletions can develop at midlatitudes by local sources. Therefore, the morphological similarity between midlatitude irregularities and EPBs or their coincident occurrence does not provide corroborating evidence of their connection.

Chang, Hyeyeon; Kil, Hyosub; Sun, Andrew; Zhang, Shun-Rong; Lee, Jiyun;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029879

Large-Scale Traveling Atmospheric and Ionospheric Disturbances Observed in GUVI With Multi-Instrument Validations

This study presents multi-instrument observations of persistent large-scale traveling ionosphere/atmospheric disturbances (LSTIDs/LSTADs) observed during moderately increased auroral electrojet activity and a sudden stratospheric warming in the polar winter hemisphere. The Global Ultraviolet Imager (GUVI), Gravity field and steady-state Ocean Circulation Explorer, Scanning Doppler Imaging Fabry–Perot Interferometers, and the Poker Flat Incoherent Scatter Radar are used to demonstrate the presence of LSTIDs/LSTADs between 19 UT and 5 UT on 18–19 January 2013 over the Alaska region down to lower midlatitudes. This study showcases the first use of GUVI for the study of LSTADs. These novel GUVI observations demonstrate the potential for the GUVI far ultraviolet emissions to be used for global-scale studies of waves and atmospheric disturbances in the thermosphere, a region lacking in long-term global measurements. These observations typify changes in the radiance from around 140 to 180 km, opening a new window into the behavior of the thermosphere.

Bossert, Katrina; Paxton, Larry; Matsuo, Tomoko; Goncharenko, Larisa; Kumari, Komal; Conde, Mark;

Published by: Geophysical Research Letters      Published on:

YEAR: 2022     DOI: 10.1029/2022GL099901

Responses of the African-European equatorial-, low-, mid-, and high-latitude ionosphere to geomagnetic storms of 2013, 2015 St Patrick’s Days, 1 June 2013, and 7 October 2015

This study investigates ionospheric responses to 2013 and 2015 St. Patrick’s Days (CME-driven), 1 June 2013 and 7 October 2015 (CIR-driven) geomagnetic storms over the African-

Akala, AO; Afolabi, RO; Otsuka, Y;

Published by: Advances in Space Research      Published on:

YEAR: 2022     DOI: 10.1016/j.asr.2022.10.029

Satellite in-situ electron density observations of the midlatitude storm enhanced density on the noon meridional plane in the F region during the 20 November 2003 magnetic storm

The GUVI measurements indicated that the atomic oxygen (O) to molecular nitrogen (N2) (2021a) used the TIMED/GUVI limb measurements and TIEGCM simulations to investigate

Lin, Chin; Sutton, Eric; Wang, Wenbin; Cai, Xuguang; Liu, Guiping; Henney, Carl; Cooke, David;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029831

Retrospect and prospect of ionospheric weather observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2

FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006

Liu, Tiger; Lin, Charles; Lin, Chi-Yen; Lee, I-Te; Sun, Yang-Yi; Chen, Shih-Ping; Chang, Fu-Yuan; Rajesh, Panthalingal; Hsu, Chih-Ting; Matsuo, Tomoko; , others;

Published by: Terrestrial, Atmospheric and Oceanic Sciences      Published on:

YEAR: 2022     DOI: 10.1007/s44195-022-00019-x

Retrospect and prospect of ionospheric weather observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2

FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006

Liu, Tiger; Lin, Charles; Lin, Chi-Yen; Lee, I-Te; Sun, Yang-Yi; Chen, Shih-Ping; Chang, Fu-Yuan; Rajesh, Panthalingal; Hsu, Chih-Ting; Matsuo, Tomoko; , others;

Published by: Terrestrial, Atmospheric and Oceanic Sciences      Published on:

YEAR: 2022     DOI: 10.1007/s44195-022-00019-x

Retrospect and prospect of ionospheric weather observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2

FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006

Liu, Tiger; Lin, Charles; Lin, Chi-Yen; Lee, I-Te; Sun, Yang-Yi; Chen, Shih-Ping; Chang, Fu-Yuan; Rajesh, Panthalingal; Hsu, Chih-Ting; Matsuo, Tomoko; , others;

Published by: Terrestrial, Atmospheric and Oceanic Sciences      Published on:

YEAR: 2022     DOI: 10.1007/s44195-022-00019-x

2021

The Influence of the Atmosphere on the Variability of the Electronic Concentration in the Ionosphere on January 2009

The results of the study of the variability of the electron concentration in the ionosphere in January 2009 are presented. Variations in the electron density in the ionosphere above individual stations and in the global electron content are considered based on the observation data and the results of the model calculations. Comparison of the ionospheric variability obtained from the results of calculations using the models of the upper atmosphere (GSM TIP) and the entire atmosphere (EAGLE) showed that the atmospheric-ionospheric interaction can play one of the key roles in the variability of the ionosphere at midlatitudes. The paper also discusses the issue of simulating the effects of stratospheric warming in 2009 using the EAGLE model.

Klimenko, M.; Ratovsky, K.; Klimenko, V.; Bessarab, F.; Sukhodolov, T.; Rozanov, E.;

Published by: Russian Journal of Physical Chemistry B      Published on: sep

YEAR: 2021     DOI: 10.1134/S1990793121050171

atmosphere; global electron abundance; Ionosphere; model of the entire atmosphere; neutral composition of the upper atmosphere; sudden stratospheric warming

Deriving column-integrated thermospheric temperature with the N$_\textrm2$ Lyman–Birge–Hopfield (2,0) band

\textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of \textlessspan class="inline-formula"\textgreaterN$_\textrm2$\textless/span\textgreater. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column \textlessspan class="inline-formula"\textgreater\textlessmath xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"\textgreater\textlessmrow class="chem"\textgreater\textlessmi mathvariant="normal"\textgreaterO\textless/mi\textgreater\textlessmo\textgreater/\textless/mo\textgreater\textlessmsub\textgreater\textlessmi mathvariant="normal"\textgreaterN\textless/mi\textgreater\textlessmn mathvariant="normal"\textgreater2\textless/mn\textgreater\textless/msub\textgreater\textless/mrow\textgreater\textless/math\textgreater\textlessspan\textgreater\textlesssvg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7003ba1ac83e7c29f962255ae440df67"\textgreater\textlesssvg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-6917-2021-ie00001.svg" width="29pt" height="14pt" src="amt-14-6917-2021-ie00001.png"/\textgreater\textless/svg:svg\textgreater\textless/span\textgreater\textless/span\textgreater ratio.\textless/p\textgreater

Cantrall, Clayton; Matsuo, Tomoko;

Published by: Atmospheric Measurement Techniques      Published on: nov

YEAR: 2021     DOI: 10.5194/amt-14-6917-2021

Ionospheric response to solar and magnetospheric protons during January 15–22, 2005: EAGLE whole atmosphere model results

We present an analysis of the ionosphere and thermosphere response to Solar Proton Events (SPE) and magnetospheric proton precipitation in January 2005, which was carried out using the model of the entire atmosphere EAGLE. The ionization rates for the considered period were acquired from the AIMOS (Atmospheric Ionization Module Osnabrück) dataset. For numerical experiments, we applied only the proton-induced ionization rates of that period, while all the other model input parameters, including the electron precipitations, corresponded to the quiet conditions. In January 2005, two major solar proton events with different energy spectra and proton fluxes occurred on January 17 and January 20. Since two geomagnetic storms and several sub-storms took place during the considered period, not only solar protons but also less energetic magnetospheric protons contributed to the calculated ionization rates. Despite the relative transparency of the thermosphere for high-energy protons, an ionospheric response to the SPE and proton precipitation from the magnetotail was obtained in numerical experiments. In the ionospheric E layer, the maximum increase in the electron concentration is localized at high latitudes, and at heights of the ionospheric F2 layer, the positive perturbations were formed in the near-equatorial region. An analysis of the model-derived results showed that changes in the ionospheric F2 layer were caused by a change in the neutral composition of the thermosphere. We found that in the recovery phase after both solar proton events and the enhancement of magnetospheric proton precipitations associated with geomagnetic disturbances, the TEC and electron density in the F region and in topside ionosphere/plasmasphere increase at low- and mid-latitudes due to an enhancement of atomic oxygen concentration. Our results demonstrate an important role of magnetospheric protons in the formation of negative F-region ionospheric storms. According to our results, the topside ionosphere/plasmasphere and bottom-side ionosphere can react to solar and magnetospheric protons both with the same sign of disturbances or in different way. The same statement is true for TEC and foF2 disturbances. Different disturbances of foF2 and TEC at high and low latitudes can be explained by topside electron temperature disturbances.

Bessarab, F.; Sukhodolov, T.; Klimenko, M.; Klimenko, V.; Korenkov, Yu.; Funke, B.; Zakharenkova, I.; Wissing, J.; Rozanov, E.;

Published by: Advances in Space Research      Published on: jan

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.026

Ionosphere; Proton precipitations; Solar proton events; thermosphere; Whole atmosphere model

Assessing the performance of a Northeast Asia Japan-centered 3-D ionosphere specification technique during the 2015 St. Patrick’s day geomagnetic storm

This paper demonstrates and assesses the capability of the advanced three-dimensional (3-D) ionosphere tomography technique, during severe conditions. The study area is northeast Asia and quasi-Japan-centred. Reconstructions are based on total electron content data from a dense ground-based global navigation satellite system receiver network and parameters from operational ionosondes. We used observations from ionosondes, Swarm satellites and radio occultation (RO) to assess the 3-D picture. Specifically, we focus on St. Patrick’s day geomagnetic storm (17–19 March 2015), the most intense in solar cycle 24. During this event, the energy ingested into the ionosphere resulted in Dst and Kp and reaching values \textasciitilde − 223 nT and 8, respectively, and the region of interest, the East Asian sector, was characterized by a \textasciitilde 60\% reduction in electron densities. Results show that the reconstructed densities follow the physical dynamics previously discussed in earlier publications about storm events. Moreover, even when ionosonde data were not available, the technique could still provide a consistent picture of the ionosphere vertical structure. Furthermore, analyses show that there is a profound agreement between the RO profiles/in-situ densities and the reconstructions. Therefore, the technique is a potential candidate for applications that are sensitive to ionospheric corrections.

Nicholas, Ssessanga; Mamoru, Yamamoto; Susumu, Saito;

Published by: Earth, Planets and Space (Online)      Published on: dec

YEAR: 2021     DOI: 10.1186/s40623-021-01447-8

geomagnetic storm; Ground-GNSS-STEC tomography; Ionosonde data assimilation

Impact of CME and HSSW driven geomagnetic storms on thermosphere and ionosphere as observed from mid-latitudes

The present paper reports magnetospheric-thermospheric-ionospheric interactions, observed during geomagnetically disturbed periods in 2015–2016 from mid-latitude stations located in the US-Pacific longitudes (\textasciitilde120°W geographic). These interactions have been analyzed for a series of Coronal Mass Ejection (CME) and High Speed Solar Wind (HSSW) driven geomagnetic storms during the moderate solar activity periods. The geomagnetically disturbed periods under consideration in this paper have an interesting feature of the occurrences of one or more HSSW events following an intense CME driven intense geomagnetic storm. Correlations were observed between the solar and geomagnetic parameters, hemispherically integrated Joule heating, changes in O/N2 ratio, corresponding changes in neutral wind velocities and mid-latitude Vertical Total Electron Content (VTEC) in most of the cases. Prolonged effects of neutral wind driven equatorward plasma transport process were noticed during the period of the summer solstice (June 23–26, 2015) which was correlated with the hemispherically integrated Joule heating and ionospheric conductivities. The effects of storm onset were observed during March 17–18, 2015. The influences of the ‘super-fountain effect’ in terms of Prompt Penetration Electric Field (PPEF) were seen during the main phases of the geomagnetic storms from these mid-latitude stations. This is correlated with the strength of Equatorial Electrojet (EEJ).

Sur, Dibyendu; Ray, Sarbani; Paul, Ashik;

Published by: Advances in Space Research      Published on: aug

YEAR: 2021     DOI: 10.1016/j.asr.2021.03.027

CME and HSSW storms; Joule heating; Meridional and zonal wind; O/N ratio; Plasma transport; VTEC

Wide-field aurora imager onboard Fengyun satellite: Data products and validation

New observations of auroras based on the wide-field aurora imager (WAI) onboard Fengyun-3D (FY-3D) satellite are exhibited in this paper. Validity of the WAI data is analyzed by comparing auroral boundaries derived from WAI observations with results obtained from data collected by the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) aboard the Defense Meteorological Satellite Program (DMSP F18). Dynamic variations of the aurora with the solar wind, interplanetary magnetic field (IMF) parameters, and the SYM-H index are also investigated. The comparison of auroral boundaries indicates that the WAI data are morphologically valid and suitable to the study of auroral dynamics. Effective responses to solar wind parameters indicate that the WAI data can be useful to monitor and predict the Earth s space weather. Since the configuration of aurora is a good indicator of the solar wind-magnetosphere-ionosphere (SW-M-I) coupling system, and can reflect the disturbance of the space environment, the WAI will provide important data to help us to study the physical processes in space.

Ding, GuangXing; Li, JiaWei; Zhang, Xiaoxin; He, Fei; He, LingPing; Song, KeFei; Sun, Liang; Dai, Shuang; Liu, ShiJie; Chen, Bo; Yu, Chao; Hu, Xiuqing; Gu, SongYan; Yang, Zhongdong; Zhang, Peng;

Published by: Earth and Planetary Physics      Published on:

YEAR: 2021     DOI: 10.26464/epp2021003

auroral dynamics; FY-3D; SSUSI; SW-M-I; WAI

Extreme Positive Ionosphere Storm Triggered by a Minor Magnetic Storm in Deep Solar Minimum Revealed by FORMOSAT-7/COSMIC-2 and GNSS Observations

This study examines an unexpected and extreme positive ionospheric response to a minor magnetic storm on August 5, 2019 by using global ionosphere specification (GIS) 3D electron density profiles obtained by assimilating radio occultation total electron content (TEC) measurements of the recently launched FORMOSAT-7/COSMIC-2 satellites, and ground-based global navigation satellite system (GNSS) TEC. The results reveal ∼300\% enhancement of equatorial ionization anomaly (EIA) crests, appearing over 200–300 km altitudes, and a much intense localized density enhancement over the European sector. These are the most intense ionospheric response that has ever been detected for a small magnetic storm with Dst ∼ −53 nT (SYM-H ∼ −64 nT). The enhancements are validated by using global ionosphere map (GIM) TEC and ground-based GNSS TEC. The GIS vertical electron density structures during the storm are examined to understand the physical processes giving rise to such an intense ionosphere response during deep solar minimum conditions when the background electron density is very low. Altitude variations and poleward shifts of the locations of the EIA crests indicate that prompt penetration electric fields (PPEF) play an important role in producing the observed positive storm responses, with the storm-induced equatorward circulation supporting the plasma accumulation against recombination losses. Additional physical mechanisms are required to fully explain the unexpected electron density enhancements for this minor storm event.

Rajesh, P.; Lin, C.; . Y. Lin, C; Chen, C.; . Y. Liu, J; Matsuo, T.; Chen, S.; Yeh, W.; . Y. Huang, C;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028261

FORMOSAT-7/COSMIC-2; Global Ionospheric Specification; ionospheric data assimilation; ionospheric response to magnetic storm; magnetosphere-ionosphere coupling; minor magnetic storm

Impact of Storm-Enhanced Density (SED) on Ion Upflow Fluxes During Geomagnetic Storm

The impact of the dynamic evolution of the Storm-Enhanced Density (SED) on the upward ion fluxes during the March 06, 2016 geomagnetic storm is studied using comprehensive multi-scale datasets. This storm was powered by a Corotating Interaction Region (CIR), and the minimum Sym-H reached ∼−110 nT. During the ionospheric positive storm phase, the SED formed and the associated plume and polar cap patches occasionally drifted anti-sunward across the polar cap. When these high-density structures encountered positive vertical flows, large ion upward fluxes were produced, with the largest upward flux reaching 3 × 1014 m−2s−1. These upflows were either the type-1 ion upflow associated with fast flow channels, such as the subauroral polarization stream (SAPS) channel, or the type-2 ion upflow due to soft particle precipitations in the cusp region. The total SED-associated upflow flux in the dayside cusp can be comparable to the total upflow flux in the nightside auroral zone despite the much smaller cusp area compared with the auroral zone. During the ionospheric negative storm phase, the ionospheric densities within the SED and plume decreased significantly and thus led to largely reduced upward fluxes. This event analysis demonstrates the critical role of the ionospheric high-density structures in creating large ion upward fluxes. It also suggests that the dynamic processes in the coupled ionosphere-thermosphere system and the resulting state of the ionospheric storm are crucial for understanding the temporal and spatial variations of ion upflow fluxes and thus should be incorporated into coupled geospace models for improving our holistic understanding of the role of ionospheric plasma in the geospace system.

Zou, Shasha; Ren, Jiaen; Wang, Zihan; Sun, Hu; Chen, Yang;

Published by: Frontiers in Astronomy and Space Sciences      Published on:

YEAR: 2021     DOI:

New Measurement of the Vertical Atmospheric Density Profile From Occultations of the Crab Nebula With X-Ray Astronomy Satellites Suzaku and Hitomi

We present new measurements of the vertical density profile of the Earth s atmosphere at altitudes between 70 and 200 km, based on Earth occultations of the Crab Nebula observed with the X-ray Imaging Spectrometer onboard Suzaku and the hard X-ray Imager onboard Hitomi. X-ray spectral variation due to the atmospheric absorption is used to derive tangential column densities of the absorbing species, that is, N and O including atoms and molecules, along the line of sight. The tangential column densities are then inverted to obtain the atmospheric number density. The data from 219 occultation scans at low latitudes in both hemispheres from September 15, 2005 to March 26, 2016 are analyzed to generate a single, highly averaged (in both space and time) vertical density profile. The density profile is in good agreement with the Naval-Research-Laboratory s-Mass-Spectrometer-Incoherent-Scatter-Radar-Extended (NRLMSISE-00) model, except for the altitude range of 70–110 km, where the measured density is ∼50\% smaller than the model. Such a deviation is consistent with the recent measurement with the SABER aboard the TIMED satellite (Cheng et al., 2020, https://doi.org/10.3390/atmos11040341). Given that the NRLMSISE-00 model was constructed some time ago, the density decline could be due to the radiative cooling/contracting of the upper atmosphere as a result of greenhouse warming in the troposphere. However, we cannot rule out a possibility that the NRL model is simply imperfect in this region. We also present future prospects for the upcoming Japan-US X-ray astronomy satellite, X-Ray Imaging and Spectroscopy Mission (XRISM), which will allow us to measure atmospheric composition with unprecedented spectral resolution of ΔE ∼ 5 eV in 0.3–12 keV.

Katsuda, Satoru; Fujiwara, Hitoshi; Ishisaki, Yoshitaka; Yoshitomo, Maeda; Mori, Koji; Motizuki, Yuko; Sato, Kosuke; Tashiro, Makoto; Terada, Yukikatsu;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028886

Crab Nebula; Hitomi; occultation; Suzaku; upper atmosphere; X-rays

Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations

This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm. By analyzing GPS data collected in Japan, we investigate temporal variations in the horizontal two-dimensional distribution of total electron content (TEC) during the geomagnetic storm. The SYM-H index reached −142 nT around 08 UT on 28 May 2017. TEC depletions extending up to approximately 38°N along the meridional direction appeared over Japan around 05 LT (LT = UT + 9 hours) on 29 May 2017, when TEC rapidly increased at sunrise due to the solar extreme ultraviolet (EUV) radiation. The TEC depletions appeared sequentially over Japan for approximately 8 hours in sunlit conditions. At 06 LT on 29 May, when the plasma depletions first appeared over Japan, the background TEC was enhanced to approximately 17 TECU, and then decreased to approximately 80\% of the TEC typical of magnetically quiet conditions. We conclude that this temporal variation of background plasma density in the ionosphere was responsible for the persistence of these plasma depletions for so long in daytime. By using the Naval Research Laboratory: Sami2 is Another Model of the Ionosphere (SAMI2), we have evaluated how plasma production and ambipolar diffusion along the magnetic field may affect the rate of plasma depletion disappearance. Simulation shows that the plasma density increases at the time of plasma depletion appearance; subsequent decreases in the plasma density appear to be responsible for the long-lasting persistence of plasma depletions during daytime. The plasma density depletion in the top side ionosphere is not filled by the plasma generated by the solar EUV productions because plasma production occurs mainly at the bottom side of the ionosphere.

Otsuka, Yuichi; Shinbori, Atsuki; Sori, Takuya; Tsugawa, Takuya; Nishioka, Michi; Huba, Joseph;

Published by: Earth and Planetary Physics      Published on:

YEAR: 2021     DOI: 10.26464/epp2021046

Ionosphere; GPS; ionospheric irregularity; plasma bubble; SAMI2

Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations

This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm. By analyzing GPS data collected in Japan, we investigate temporal variations in the horizontal two-dimensional distribution of total electron content (TEC) during the geomagnetic storm. The SYM-H index reached −142 nT around 08 UT on 28 May 2017. TEC depletions extending up to approximately 38°N along the meridional direction appeared over Japan around 05 LT (LT = UT + 9 hours) on 29 May 2017, when TEC rapidly increased at sunrise due to the solar extreme ultraviolet (EUV) radiation. The TEC depletions appeared sequentially over Japan for approximately 8 hours in sunlit conditions. At 06 LT on 29 May, when the plasma depletions first appeared over Japan, the background TEC was enhanced to approximately 17 TECU, and then decreased to approximately 80\% of the TEC typical of magnetically quiet conditions. We conclude that this temporal variation of background plasma density in the ionosphere was responsible for the persistence of these plasma depletions for so long in daytime. By using the Naval Research Laboratory: Sami2 is Another Model of the Ionosphere (SAMI2), we have evaluated how plasma production and ambipolar diffusion along the magnetic field may affect the rate of plasma depletion disappearance. Simulation shows that the plasma density increases at the time of plasma depletion appearance; subsequent decreases in the plasma density appear to be responsible for the long-lasting persistence of plasma depletions during daytime. The plasma density depletion in the top side ionosphere is not filled by the plasma generated by the solar EUV productions because plasma production occurs mainly at the bottom side of the ionosphere.

Otsuka, Yuichi; Shinbori, Atsuki; Sori, Takuya; Tsugawa, Takuya; Nishioka, Michi; Huba, Joseph;

Published by: Earth and Planetary Physics      Published on:

YEAR: 2021     DOI: 10.26464/epp2021046

Ionosphere; GPS; ionospheric irregularity; plasma bubble; SAMI2

Explicit IMF By-Dependence in Geomagnetic Activity: Quantifying Ionospheric Electrodynamics

Geomagnetic activity is mainly driven by the southward (Bz) component of the interplanetary magnetic field (IMF), which dominates all solar wind coupling functions. Coupling functions also depend on the absolute value of the dawn-dusk (By) component of the IMF, but not on its sign. However, recent studies have shown that for a fixed level of solar wind driving, auroral electrojets in the Northern Hemisphere (NH) are stronger for By \textgreater 0 than for By \textless 0 during NH winter. In NH summer, the dependence on the By sign is reversed. While this By sign dependence, also called the explicit By-dependence, is very strong in the winter hemisphere, it is weak in the summer hemisphere. Moreover, the explicit By-dependence is much stronger in the westward electrojet than in the eastward electrojet. In this study, we study how the explicit IMF By-dependence is coupled with large-scale field-aligned currents (FACs) by using FAC measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and an empirical ionospheric conductance model. We model the complete ionospheric electrodynamics by solving the current continuity equation, and show that during periods of elevated solar wind driving (Bz \textless 0), the IMF By component modulates Regions 1 and 2 FACs in the dawn sector of the winter hemisphere. This leads to an explicit By-dependence in ionospheric conductance and the westward electrojet. We also show that the By-dependence of FACs and conductance is weak in the dusk sector, which explains the earlier observation of the weak By-dependence of the eastward electrojet.

Holappa, L.; Robinson, R.; Pulkkinen, A.; Asikainen, T.; Mursula, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029202

space weather; magnetosphere-ionosphere coupling; field-aligned currents; geomagnetic activity

Deriving column-integrated thermospheric temperature with the N 2 Lyman—Birge—Hopfield (2, 0) band

This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal

Cantrall, Clayton; Matsuo, Tomoko;

Published by: Atmospheric Measurement Techniques      Published on:

YEAR: 2021     DOI: 10.5194/amt-14-6917-2021

Ionospheric response to solar and magnetospheric protons during January 15—22, 2005: EAGLE whole atmosphere model results

We present an analysis of the ionosphere and thermosphere response to Solar Proton Events (SPE) and magnetospheric proton precipitation in January 2005, which was carried out

Bessarab, Fedor; Sukhodolov, Timofei; Klimenko, Maxim; Klimenko, Vladimir; Korenkov, Yu; Funke, Bernd; Zakharenkova, Irina; Wissing, Jan; Rozanov, EV;

Published by: Advances in Space Research      Published on:

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.026

Interaction Between an EMSTID and an EPB in the EIA Crest Region Over China

Few observations investigated the interaction between an electrical medium-scale traveling ionospheric disturbance (EMSTID) and an equatorial plasma bubble (EPB). This paper presents another interaction between a southwestward propagating EMSTID and an eastward drifting EPB in the equatorial ionization anomaly (EIA) crest region of China. When the EMSTID and the EPB touched each other, several depletions of the EMSTID (EPB) showed the eastward (westward) velocity disturbances of the EPB (EMSTID) depletions. Besides, phase elongations of the EPB depletions contrarotated as the EMSTID propagated southwestward. However, of important finding is that the interaction of the EMSTID and the EPB could have polarized one depletion of the postmidnight EPB that should have become a fossilized bubble. Inside that polarized EPB depletion were meter-scale irregularities that caused activated radar echoes and enhanced ranged spread F (RSF). The interaction occurred in descending ionosphere and the lower density regions got filled up with an enhanced density plasma. We propose that the EMSTID and the EPB could have electrically coupled with each other, causing an enhanced polarization electric field (PEF) that polarized that EPB depletion; the E × B gradient drift instability (Kelley, 1989) could have caused the meter-scale irregularities when that enhanced PEF was imposed on that reactivated EPB depletion surrounded by that enhanced density plasma. This study provides observational evidence that how an electrical couple of EMSTID and EPB events can activate a postmidnight EPB depletion that should become a fossilized structure.

Sun, Longchang; Xu, JiYao; Zhu, Yajun; Xiong, Chao; Yuan, Wei; Wu, Kun; Hao, Yongqiang; Chen, Gang; Yan, Chunxiao; Wang, Zhihua; Zhao, Xiukuan; Luo, Xiaomin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA029005

airglow; EIA crest region; Interaction between MSTID and EPB; Nighttime plasma density enhancement; Polarization of postmidnight EPB; VHF radar echoes and range spread F

2020

Multi-wavelength coordinated observations of ionospheric irregularity structures from an anomaly crest location during unusual solar minimum of the 24th cycle

The present paper reports coordinated ionospheric irregularity measurements at optical as well as GPS wavelengths. Optical measurements were obtained from Tiny Ionospheric Photometer (TIP) sensors installed onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. GPS radio signals were obtained from a dual frequency GPS receiver operational at Calcutta (22.58\textdegreeN, 88.38\textdegreeE geographic; geomagnetic dip: 32.96\textdegree; 13.00\textdegreeN, 161.63\textdegreeE geomagnetic) under the SCIntillation Network Decision Aid (SCINDA) program. Calcutta is located near the northern crest of Equatorial Ionization Anomaly (EIA) in the Indian longitude sector. The observations were conducted during the unusually low and prolonged solar minima period of 2008\textendash2010. During this period, four cases of post-sunset GPS scintillation were observed from Calcutta. Among those cases, simultaneous fluctuations in GPS Carrier-to-Noise ratios (C/No) and measured radiances from TIP over a common ionospheric volume were observed only on February 2, 2008 and September 25, 2008. Fluctuations observed in measured radiances (maximum 0.95 Rayleigh) from TIP due to ionospheric irregularities were found to correspond well with C/N0 fluctuations on the GPS links observed from Calcutta, such effects being noted even during late evening hours of 21:00\textendash22:00 LT from locations around 40\textdegree magnetic dip. These measurements indicate the existence of electron density irregularities of scale sizes varying over several decades from 135.6\ nm to 300\textendash400\ m well beyond the northern crest of the EIA in the Indian longitude sector during late evening hours even in the unusually low solar activity conditions.

Paul, Ashik; Sur, Dibyendu; Haralambous, Haris;

Published by: Advances in Space Research      Published on: 03/2020

YEAR: 2020     DOI: 10.1016/j.asr.2019.11.035

GPS radio measurements; ionospheric irregularities; Northern crest of EIA; Optical measurements; solar minimum; TIP

The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are

Major geomagnetic storms are caused by un-usually intense solar wind southward magnetic fields thatimpinge upon the Earth\textquoterights magnetosphere (Dungey, 1961).How can we predict the occurrence of future interplanetary events? Do we currently know enough of the underlying physics and do we have sufficient observations of solar wind phenomena that will impinge upon the Earth\textquoterights magnetosphere? We view this as the most important challenge in space weather. We discuss the case for magnetic clouds (MCs), interplanetary sheaths upstream of interplanetary coronal mass ejections (ICMEs), corotating interactionregions (CIRs) and solar wind high-speed streams (HSSs).The sheath- and CIR-related magnetic storms will be difficult to predict and will require better knowledge of the slow solar wind and modeling to solve. For interplanetaryspace weather, there are challenges for understanding the fluences and spectra of solar energetic particles (SEPs). This will require better knowledge of interplanetary shock properties as they propagate and evolve going from the Sun to1 AU (and beyond), the upstream slow solar wind and energetic \textquotedblleftseed\textquotedblright particles. Dayside aurora, triggering of night-side substorms, and formation of new radiation belts can all be caused by shock and interplanetary ram pressure impingements onto the Earth\textquoterights magnetosphere. The acceleration and loss of relativistic magnetospheric \textquotedblleftkiller\textquotedblright electronsand prompt penetrating electric fields in terms of causingpositive and negative ionospheric storms are reasonably well understood, but refinements are still needed. The forecasting of extreme events (extreme shocks, extreme solar energeticparticle events, and extreme geomagnetic storms (Carrington events or greater)) are also discussed. Energetic particle precipitation into the atmosphere and ozone destructionare briefly discussed. For many of the studies, the Parker Solar Probe, Solar Orbiter, Magnetospheric Multiscale Mission(MMS), Arase, and SWARM data will be useful.

Tsurutani, Bruce; Lakhina, Gurbax; Hajra, Rajkumar;

Published by: Nonlinear Processes in Geophysics      Published on: 01/2020

YEAR: 2020     DOI: 10.5194/npg-27-75-2020

Effects of CME and CIR induced geomagnetic storms on low-latitude ionization over Indian longitudes in terms of neutral dynamics

Chakraborty, Sumanjit; Ray, Sarbani; Sur, Dibyendu; Datta, Abhirup; Paul, Ashik;

Published by: Advances in Space Research      Published on:

YEAR: 2020     DOI:

Sources of Thermospheric Variability During Solar Minimum

Cantrall, Clayton; Matsuo, Tomoko;

Published by:       Published on:

YEAR: 2020     DOI:

Response of Equatorial Ionization in Indian Longitudes to HSSW Driven Geomagnetic Storm

Sur, Dibyendu; Firdaus, Jasmine; Paul, Trisha; Dutta, Raktima; Bhattacharyya, Chaitali;

Published by:       Published on:

YEAR: 2020     DOI:

Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80 E and 120 E longitudes in the Asian sector

Lissa, D; Srinivasu, VKD; Prasad, DSVVD; Niranjan, K;

Published by: Advances in Space Research      Published on:

YEAR: 2020     DOI:

Correlation of Disturbed Dynamo Electric Field and Thermospheric Plasma Transport with Latitudinally Diverse Total Electron Content During Recovery Phase of a Geomagnetic Storm

The present paper establishes positive correlation between the latitudinal extents of Disturbed Dynamo electric Field (DDEF) with the intensity of geomagnetic storm during October

Sur, Dibyendu; Firdaus, Jasmine; Dutta, Raktima; Chakraborty, Athena;

Published by: Proceedings of Industry Interactive Innovations in Science, Engineering \& Technology (I3SET2K19)      Published on:

YEAR: 2020     DOI:

The seasonal and longitudinal variations of nighttime OI 135.6-nm emission at equatorial ionization anomaly crests observed by the DMSP/SSUSI

the South American longitudinal sector, which was also observed by GUVI data (Kil et al., 2004); This result was also observed by GUVI in Kil et al. (2004), ROCSAT-1 in Y. Chen et al.

Guo, Bing; Xu, JiYao; Sun, Longchang; Lin, Yingjun; Yuan, Wei;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: 10.1029/2019JA027764

The day-glow data application of FY-3D IPM in monitoring O/N2

The Ionosphere Photometer (IPM) is a far ultraviolet nadir-viewing photometer that flew aboard the second-generation, polar-orbiting Chinese meteorological satellite FY-3D, which was

Jiang, Fang; Mao, Tian; Zhang, Xiaoxin; Wang, Yungang; Fu, Liping; Hu, Xiuqing; Wang, DaXin; Jia, Nan; Wang, Tianfang; Sun, YueQiang;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on:

YEAR: 2020     DOI: 10.1016/j.jastp.2020.105309

Observation of thermosphere and ionosphere using the ionosphere PhotoMeter (IPM) on the Chinese meteorological satellite FY-3D

The Ionosphere PhotoMeter (IPM) is a far ultraviolet nadir-viewing photometer that flew aboard the second-generation, polar-orbiting Chinese meteorological satellite Feng-Yun 3D (FY-3D), which was launched on November 25th, 2017.

Jiang, Fang; Mao, Tian; Zhang, Xiaoxin; Wang, Yun-Gang; Hu, Xiuqing; Wang, DaXin; Jia, Nan; Wang, Tianfang; Sun, YueQiang; Fu, Li-Ping;

Published by: Advances in Space Research      Published on:

YEAR: 2020     DOI: 10.1016/j.asr.2020.07.027

2019

The dependence of four-peak longitudinal structure of the tropical electric field on the processes in the lower atmosphere and geomagnetic field configuration

Klimenko, V.V.; Klimenko, M.V.; Bessarab, F.S.; Sukhodolov, T.V.; Rozanov, E.V.;

Published by: Advances in Space Research      Published on: 11/2019

YEAR: 2019     DOI: 10.1016/j.asr.2019.06.029

Characteristics of GNSS total electron content enhancements over the mid-latitudes during a geomagnetic storm on November 7 and 8, 2004

The characteristics of global electron density variations in the ionosphere during a geomagnetic storm on November 7 and 8, 2004, were investigated using total electron content (TEC) obtained from the global navigation satellite system (GNSS). The regions of enhanced TEC over North America, Europe, and Japan first appeared in the mid-latitude regions. The TEC enhancements over North America showed a rapid longitudinal expansion and reached a wide longitudinal extent during the initial and main phases of the geomagnetic storm. TEC enhancements were simultaneously observed in both North America and Japan at 05:00 UT on November 8. Observation data from the Defense Meteorological Satellite Program showed a slight enhancement of electron density at 850 km below the equatorward boundary of the mid-latitude trough (45\textendash48\textdegreeN in geomagnetic latitude) over the Pacific Ocean. This electron density variation may correspond to the TEC enhancements observed in both Japan and North America. These results imply that an enhanced TEC region existed between North America and Japan. The TEC enhancement in Japan appeared with a magnetic conjugacy in the Southern hemisphere, indicating one of the characteristics of storm-enhanced density (SED). Moreover, TEC enhancements simultaneously appeared from Japan to Central Asia at 11:00 UT on November 8, corresponding to the early recovery phase of the geomagnetic storm. From the above results, it is suggested that SED phenomena can be simultaneously generated over a wide longitudinal width (~100\textdegree). The longitudinal extent of this SED event is 2.5\textendash5.0 times longer than those reported by previous studies.

Sori, T.; Shinbori, A.; Otsuka, Y.; Tsugawa, T.; Nishioka, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026713

Characteristics of GNSS total electron content enhancements over the mid-latitudes during a geomagnetic storm on November 7 and 8, 2004

The characteristics of global electron density variations in the ionosphere during a geomagnetic storm on November 7 and 8, 2004, were investigated using total electron content (TEC) obtained from the global navigation satellite system (GNSS). The regions of enhanced TEC over North America, Europe, and Japan first appeared in the mid-latitude regions. The TEC enhancements over North America showed a rapid longitudinal expansion and reached a wide longitudinal extent during the initial and main phases of the geomagnetic storm. TEC enhancements were simultaneously observed in both North America and Japan at 05:00 UT on November 8. Observation data from the Defense Meteorological Satellite Program showed a slight enhancement of electron density at 850 km below the equatorward boundary of the mid-latitude trough (45\textendash48\textdegreeN in geomagnetic latitude) over the Pacific Ocean. This electron density variation may correspond to the TEC enhancements observed in both Japan and North America. These results imply that an enhanced TEC region existed between North America and Japan. The TEC enhancement in Japan appeared with a magnetic conjugacy in the Southern hemisphere, indicating one of the characteristics of storm-enhanced density (SED). Moreover, TEC enhancements simultaneously appeared from Japan to Central Asia at 11:00 UT on November 8, corresponding to the early recovery phase of the geomagnetic storm. From the above results, it is suggested that SED phenomena can be simultaneously generated over a wide longitudinal width (~100\textdegree). The longitudinal extent of this SED event is 2.5\textendash5.0 times longer than those reported by previous studies.

Sori, T.; Shinbori, A.; Otsuka, Y.; Tsugawa, T.; Nishioka, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026713

Effects of CME and CIR induced geomagnetic storms on low-latitude ionization over Indian longitudes in terms of neutral dynamics

This paper presents the response of the ionosphere during the intense geomagnetic storms of October 12\textendash20, 2016 and May 26\textendash31, 2017 which occurred during the declining phase of the solar cycle 24. Total Electron Content (TEC) from GPS measured at Indore, Calcutta and Siliguri having geomagnetic dips varying from 32.23\textdegreeN, 32\textdegreeN and 39.49\textdegreeN respectively and at the International GNSS Service (IGS) stations at Lucknow (beyond anomaly crest), Hyderabad (between geomagnetic equator and northern crest of EIA) and Bangalore (near magnetic equator) in the Indian longitude zone have been used for the storms. Prominent peaks in diurnal maximum in excess of 20\textendash45 TECU over the quiet time values were observed during the October 2016 storm at Lucknow, Indore, Hyderabad, Bangalore and 10\textendash20 TECU for the May 2017 storm at Siliguri, Indore, Calcutta and Hyderabad. The GUVI images onboard TIMED spacecraft that measures the thermospheric O/N2 ratio, showed high values (O/N2 ratio of about 0.7) on October 16 when positive storm effects were observed compared to the other days during the storm period. The observed features have been explained in terms of the O/N2 ratio increase in the equatorial thermosphere, CIR-induced High Speed Solar Wind (HSSW) event for the October 2016 storm. The TEC enhancement has also been explained in terms of the Auroral Electrojet (AE), neutral wind values obtained from the Horizontal Wind Model (HWM14) and equatorial electrojet strength from magnetometer data for both October 2016 and May 2017 storms. These results are one of the first to be reported from the Indian longitude sector on influence of CME- and CIR-driven geomagnetic storms on TEC during the declining phase of solar cycle 24.

Chakraborty, S.; Ray, S.; Sur, D.; Datta, A.; Paul, A.;

Published by: Advances in Space Research      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.asr.2019.09.047

Upper Atmosphere Radiance Data Assimilation: A Feasibility Study for GOLD Far Ultraviolet Observations

Far ultraviolet observations of Earth\textquoterights dayglow from the National Aeronautics and Space Administration (NASA) Global-scale Observations of the Limb and Disk (GOLD) mission presents an unparalleled opportunity for upper atmosphere radiance data assimilation. Assimilation of the Lyman-Birge-Hopfield (LBH) band emissions can be formulated in a similar fashion to lower atmosphere radiance data assimilation approaches. To provide a proof-of-concept for such an approach, this paper presents assimilation experiments of simulated LBH emission data using an ensemble filter measurement update step implemented with National Oceanic and Atmospheric Administration (NOAA)\textquoterights Whole Atmosphere Model (WAM) and National Center for Atmospheric Research (NCAR)\textquoterights Global Airglow (GLOW) model. Primary findings from observing system simulation experiments (OSSEs), wherein \textquotedbllefttruth\textquotedblright atmospheric conditions simulated by NCAR\textquoterights Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) are used to generate synthetic GOLD data, are as follows: (1) Assimilation of GOLD LBH disk emission data can reduce the bias in model temperature specification (ensemble mean) by 60\% under both geomagnetically quiet conditions and disturbed conditions. (2) The reduction in model uncertainty (ensemble spread) as a result of assimilation is about 20\% in the lower thermosphere and 30\% in the upper thermosphere for both conditions. These OSSEs demonstrate the potential for far ultraviolet radiance data assimilation to dramatically reduce the model biases in thermospheric temperature specification and to extend the utility of GOLD observations by helping to resolve the altitude-dependent global-scale response of the thermosphere to geomagnetic storms.

Cantrall, Clayton; Matsuo, Tomoko; Solomon, Stanley;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026910



  1      2      3      4      5