Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 43 entries in the Bibliography.


Showing entries from 1 through 43


2022

Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme

In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (\textless 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus.

Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro;

Published by: Experimental Astronomy      Published on: mar

YEAR: 2022     DOI: 10.1007/s10686-022-09846-9

Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050

2021

PROBA2 LYRA Occultations: Thermospheric Temperature and Composition, Sensitivity to EUV Forcing, and Comparisons With Mars

A method for retrieving temperature and composition from 150 to 350 km in Earth s thermosphere using total number density measurements made via extreme ultraviolet (EUV) solar occultations by the Project for OnBoard Autonomy 2/Large Yield Radiometer (PROBA2/LYRA) instrument is presented. Systematic and random uncertainties are calculated and found to be less than 5\% for the temperature measurements and 5\%–20\% for the composition measurements. Regression coefficients relating both temperature and the [O]/[N2] abundance ratio with EUV irradiance at 150, 275, and 350 km are reported. Additionally, it is shown that the altitude where [O] equals [N2] decreases with increasing solar EUV irradiance, an effect attributed to thermal expansion. Temperatures from 2010 to 2017 are compared with estimates from the MSIS empirical model and show good agreement at the dawn terminator but LYRA is markedly cooler at the dusk terminator, with the MSIS-LYRA temperature difference increasing with solar activity. Anthropogenic cooling can explain this discrepancy at periods of lower solar activity, but the divergence of temperature with increasing solar activity remains unexplained. LYRA measurements of the exospheric temperature sensitivity to EUV irradiance are compared with contemporaneous measurements made at Mars, showing that the exospheric temperature at Mars is approximately half as sensitive to EUV variability as that of Earth.

Thiemann, Edward; Dominique, Marie;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029262

comparative planetology; EUV; occultations; space weather; thermosphere

The Delayed Ionospheric Response to the 27-day Solar Rotation Period Analyzed With GOLD and IGS TEC Data

The delayed ionospheric response is analyzed for two well-defined 27-day solar rotation periods in the year 2019 with solar radio flux index F10.7 and Global-scale Observations of the Limb and Disk (GOLD) data, like solar extreme ultraviolet (EUV) flux proxy, O/N2 column density ratio and peak electron density, as well as International Global Navigation Satellite System Service rapid high-rate total electron content (TEC) map data. Although the correlation between GOLD solar EUV flux proxy and TEC is similar to the correlation between F10.7 and TEC, it is shown that the estimated delays based on GOLD data are in much better agreement with recent studies using EUV measurements compared to the delays based on F10.7 data. The GOLD peak electron density correlates well with TEC and allows insight to a local time interval when the ionosphere is not controlled by solar activity changes (17:00 LT to 21:00 LT). The present study investigates the impact of the solar activity (F10.7, GOLD EUV flux proxy) and O/N2 column density ratio on the ionospheric delay for two representative solar rotation periods. The capabilities of GOLD data for future research on the ionospheric response to the 27-day solar rotation period are demonstrated and discussed. These results are crucial information for precise ionospheric models and forecasts.

Schmölter, Erik; Berdermann, Jens; Codrescu, Mihail;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028861

Ionosphere; solar proxies; time delay; total electron content

2019

Space Weather Modeling Capabilities Assessment: Auroral Precipitation and High-Latitude Ionospheric Electrodynamics

As part of its International Capabilities Assessment effort, the Community Coordinated Modeling Center initiated several working teams, one of which is focused on the validation of models and methods for determining auroral electrodynamic parameters, including particle precipitation, conductivities, electric fields, neutral density and winds, currents, Joule heating, auroral boundaries, and ion outflow. Auroral electrodynamic properties are needed as input to space weather models, to test and validate the accuracy of physical models, and to provide needed information for space weather customers and researchers. The working team developed a process for validating auroral electrodynamic quantities that begins with the selection of a set of events, followed by construction of ground truth databases using all available data and assimilative data analysis techniques. Using optimized, predefined metrics, the ground truth data for selected events can be used to assess model performance and improvement over time. The availability of global observations and sophisticated data assimilation techniques provides the means to create accurate ground truth databases routinely and accurately.

Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; Liemohn, Michael; Weygand, James; Crowley, Geoffrey; Merkin, Viacheslav; McGranaghan, Ryan; Mannucci, Anthony;

Published by: Space Weather      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018SW002127

2018

Ionospheric response to solar EUV variations: Preliminary results

We investigate the ionospheric response to solar Extreme Ultraviolet (EUV) variations using different proxies, based on solar EUV spectra observed from the Solar Extreme Ultraviolet Experiment (SEE) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, the F10.7 index (solar irradiance at 10.7cm), and the Bremen composite Mg-II index during January 2003 to December 2016. The daily mean solar proxies are compared with global mean Total Electron Content (GTEC) values calculated from global IGS TEC maps. The preliminary analysis shows a significant correlation between GTEC and both the integrated flux from SEE and the Mg II index, while F10.7 correlates less strongly with GTEC. The correlations of EUV proxies and GTEC at different time periods are presented. An ionospheric delay in GTEC is observed at the 27 days solar rotation period with the time scale of about \~ 1\textendash2 days. An experiment with the physics based global 3-D Coupled Thermosphere/Ionosphere Plasmasphere electrodynamics (CTIPe) numerical model was performed to reproduce the ionospheric delay. Model simulations were performed for different values of the F10.7 index while keeping all the other model inputs constant. Preliminary results qualitatively reproduce the observed \~ 1\textendash2 days delay in GTEC, which is might be due to vertical transport processes.

Vaishnav, Rajesh; Jacobi, Christoph; Berdermann, Jens; Schmölter, Erik; Codrescu, Mihail;

Published by: Advances in Radio Science      Published on: 09/2018

YEAR: 2018     DOI: 10.5194/ars-16-157-2018

Estimation of the ionosphere-thermosphere energy budget during geomagnetic storms with GITM, satellite observations and empirical models

Improving modeling of the ionosphere-thermosphere (IT) energy budget is important for correct representation of the IT system and physics-based space weather forecasting. We present a framework for estimation of the IT energy budget with the physics-based Global Ionosphere-Thermosphere Model (GITM), empirical models and observations. The approach is illustrated for the 16-19 March 2013 and 2015 geomagnetic storms. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are utilized to drive GITM. We focus on contributions to the energy budget from auroral heating, Joule heating, thermospheric nitric oxide (NO) and carbon dioxide (CO2) cooling emissions. Empirical models of auroral hemispheric power based on the TIMED/GUVI measurements and of the Joule heating are used. The cooling emission powers and fluxes are derived from TIMED/SABER measurements.

Verkhoglyadova, Olga; Meng, Xing; Mannucci, Anthony; Mlynczak, Martin; Hunt, Linda; Lu, Gang;

Published by: 2018 Triennial Earth-Sun Summit (TESS      Published on:

YEAR: 2018     DOI:

Middle and low-latitude ionosphere-thermosphere responses to solar wind driving during CME-type storms

Verkhoglyadova, Olga; Mlynczak, MG; Mannucci, Anthony; Paxton, Larry; Hunt, Linda; Komjathy, Attila;

Published by: 42nd COSPAR Scientific Assembly      Published on:

YEAR: 2018     DOI:

Observational aspects of the IT energy budget at the multi-scales

Verkhoglyadova, OP; Meng, X; Mannucci, AJ; McGranaghan, R;

Published by:       Published on:

YEAR: 2018     DOI:

2017

Vertical Thermospheric Density Profiles From EUV Solar Occultations Made by PROBA2 LYRA for Solar Cycle 24

A new data set of summed neutral N2 and O number density profiles, spanning altitudes between 150 and 400\ km, and observed during Northern Winter from 2010 to 2016 is presented. The neutral density profiles are derived from solar occultation measurements made by the 0.1\textendash20\ nm Zr channel on the Large Yield Radiometer (LYRA) instrument on board Project for Onboard Autonomy 2 (PROBA2). The climatology derived from the vertical profiles is consistent with that predicted by the NRLMSISE-00 model, and the systematic error and random uncertainty of the measurements are less than 13\% and 6\%, respectively. The density profiles are used to characterize the response of thermospheric density to solar EUV irradiance variability. Peak correlation coefficients between neutral density and EUV irradiance occur near 300\ km at the dusk terminator and 220\ km at the dawn terminator. Density variability is higher at dawn than it is at dusk, and temperature variability increases with increasing altitude at both terminators.

Thiemann, E.; Dominique, M.; Pilinski, M.; Eparvier, F.;

Published by: Space Weather      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017SW001719

Revisiting Ionosphere-Thermosphere Responses to Solar Wind Driving in Superstorms of November 2003 and 2004

We revisit three complex superstorms of 19\textendash20 November 2003, 7\textendash8 November 2004, and 9\textendash11 November 2004 to analyze ionosphere-thermosphere (IT) effects driven by different solar wind structures associated with complex interplanetary coronal mass ejections (ICMEs) and their upstream sheaths. The efficiency of the solar wind-magnetosphere connection throughout the storms is estimated by coupling functions. The daytime IT responses to the complex driving are characterized by combining and collocating (where possible) measurements of several physical parameters (total electron content or TEC, thermospheric infrared nitric oxide emission, and composition ratio) from multiple satellite platforms and ground-based measurements. A variety of metrics are utilized to examine global IT phenomena at ~1\ h timescales. The role of direct driving of IT dynamics by solar wind structures and the role of IT preconditioning in these storms, which feature complex unusual TEC responses, are examined and contrasted. Furthermore, IT responses to ICME magnetic clouds and upstream sheaths are separately characterized. We identify IT feedback effects that can be important for long-lasting strong storms. The role of the interplanetary magnetic field By component on ionospheric convection may not be well captured by existing coupling functions. Mechanisms of thermospheric overdamping and consequential ionospheric feedback need to be further studied.

Verkhoglyadova, O.; Komjathy, A.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Paxton, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.1010.1002/2017JA024542

Ionosphere-thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies

The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16\textendash19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.

Verkhoglyadova, O.; Meng, X.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Lu, G.;

Published by: Space Weather      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/swe.v15.910.1002/2017SW001650

Multiinstrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm

We present a multiinstrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm, which had the largest impact on the disturbance storm-time index that year. The geomagnetic storm was the result of two powerful Earth-directed coronal mass ejections (CMEs). It produced a strong long lasting negative storm phase over Greenland with a dominant energy input in the polar cap. We employed global navigation satellite system (GNSS) networks, geomagnetic observatories, and a specific ionosonde station in Greenland. We complemented the approach with spaceborne measurements in order to map the state and variability of the Arctic ionosphere. In situ observations from the Canadian CASSIOPE (CAScade, Smallsat and Ionospheric Polar Explorer) satellite\textquoterights ion mass spectrometer were used to derive ion flow data from the polar cap topside ionosphere during the event. Our research specifically found that (1) thermospheric O/N 2 measurements demonstrated significantly lower values over the Greenland sector than prior to the storm time. (2) An increased ion flow in the topside ionosphere was observed during the negative storm phase. (3) Negative storm phase was a direct consequence of energy input into the polar cap. (4) Polar patch formation was significantly decreased during the negative storm phase. This paper addresses the physical processes that can be responsible for this ionospheric storm development in the northern high latitudes. We conclude that ionospheric heating due to the CME\textquoterights energy input caused changes in the polar atmosphere resulting in N e upwelling, which was the major factor in high-latitude ionosphere dynamics for this storm.

Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Shume, Esayas; Benzon, Hans-Henrik; Mannucci, Anthony; Butala, Mark; H\oeg, Per; Langley, Richard;

Published by: Radio Science      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016RS006106

Superstorms of November 2003 and 2004: the role of solar wind driving in the ionosphere-thermosphere dynamics

Verkhoglyadova, Olga; Komjathy, Attila; Mannucci, Anthony; Mlynczak, Martin; Hunt, Linda; Paxton, Larry;

Published by:       Published on:

YEAR: 2017     DOI:

2016

Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015

We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)-driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74\textendash79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere-thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low-latitude and northern middle-latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11\textdegree latitudinal zones is based on Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high-speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME-type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics.

Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Paxton, L.; Komjathy, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.910.1002/2016JA022883

Middle-latitude ionospheric irregularities and scintillation during geomagnetic storms

Pi, Xiaoqing; Mannucci, Anthony; Valant-Spaight, Bonnie; Viereck, Rodney; Zhang, Yongliang;

Published by:       Published on:

YEAR: 2016     DOI:

Heliosphere-ionosphere-thermosphere coupling and energy budget in geomagnetic storms

1. Solar irradiance: F10. 7 2. High-latitude electric and magnetic field potential patterns and field-aligned currents (FAC): empirical Weimer05 model (Weimer, 2005), can use AMIE input

Verkhoglyadova, OP; Mannucci, AJ; Meng, X; Komjathy, A; Mlynczak, MG; Hunt, LA; Tsurutani, BT;

Published by:       Published on:

YEAR: 2016     DOI:

Multi-Instrument Observations of Geomagnetic Storms in the Arctic Ionosphere

Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Shume, Esayas; Benzon, Hans-Henrik; Mannucci, Anthony; Butala, Mark; H\oeg, Per; Langley, Richard;

Published by:       Published on:

YEAR: 2016     DOI:

2015

Use of radio occultation to probe the high-latitude ionosphere

We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere\textendashionosphere because of the important role of conductivity on high-latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejection (CME) storms are examined with the COSMIC data. We find clear correlation between geomagnetic activity and electron density retrievals from COSMIC. At nighttime local times, the number of profiles with maximum electron densities in the E layer (below 200 km altitude) is well correlated with geomagnetic activity. We interpret this to mean that electron density increases due to precipitation are captured by the COSMIC profiles. These "E-layer-dominant ionosphere" (ELDI) profiles have geomagnetic latitudes that are consistent with climatological models of the auroral location. For the two HSS storms that occurred in May of 2011 and 2012, a strong hemispheric asymmetry is observed, with nearly all the ELDI profiles found in the Southern, less sunlit, Hemisphere. Stronger aurora and precipitation have been observed before in winter hemispheres, but the degree of asymmetry deserves further study. For the two CME storms, occurring in July and November of 2012, large increases in the number of ELDI profiles are found starting in the storm\textquoterights main phase but continuing for several days into the recovery phase. Analysis of the COSMIC profiles was extended to all local times for the July 2012 CME storm by relaxing the ELDI criterion and instead visually inspecting all profiles above 50\textdegree magnetic latitude for signatures of precipitation in the E region. For 9 days during the July 2012 period, we find a signature of precipitation occurs nearly uniformly in local time, although the magnitude of electron density increase may vary with local time. The latitudinal extent of the precipitation layers is generally consistent with auroral climatology. However, after the storm main phase on 14 July 2012 the precipitation tended to be somewhat more equatorward than the climatology (by about 5\textendash10\textdegree latitude) and equatorward of the auroral boundary data acquired from the SSUSI sensor onboard the F18 DMSP satellite. We conclude that, if analyzed appropriately, high-latitude COSMIC profiles have the potential to contribute to our understanding of MI coupling processes and extend and improve existing models of the auroral region.

Mannucci, A.; Tsurutani, B.; Verkhoglyadova, O.; Komjathy, A.; Pi, X.;

Published by: Atmospheric Measurement Techniques      Published on: 07/2015

YEAR: 2015     DOI: 10.5194/amt-8-2789-2015

Where does the Thermospheric Ionospheric GEospheric Research (TIGER) Program go?

At the 10th Thermospheric Ionospheric GEospheric Research (TIGER/COSPAR) symposium held in Moscow in 2014 the achievements from the start of TIGER in 1998 were summarized. During that period, great progress was made in measuring, understanding, and modeling the highly variable UV-Soft X-ray (XUV) solar spectral irradiance (SSI), and its effects on the upper atmosphere. However, after more than 50years of work the radiometric accuracy of SSI observation is still an issue and requires further improvement. Based on the extreme ultraviolet (EUV) data from the SOLAR/SolACES, and SDO/EVE instruments, we present a combined data set for the spectral range from 16.5 to 105.5nm covering a period of 3.5years from 2011 through mid of 2014. This data set is used in ionospheric modeling of the global Total Electron Content (TEC), and in validating EUV SSI modeling. For further investigations the period of 3.5years is being extended to about 12years by including data from SOHO/SEM and TIMED/SEE instruments. Similarly, UV data are used in modeling activities. After summarizing the results, concepts are proposed for future real-time SSI measurements with in-flight calibration as experienced with the ISS SOLAR payload, for the development of a space weather camera for observing and investigating space weather phenomena in real-time, and for providing data sets for SSI and climate modeling. Other planned topics are the investigation of the relationship between solar EUV/UV and visible/near-infrared emissions, the impact of X-rays on the upper atmosphere, the development of solar EUV/UV indices for different applications, and establishing a shared TIGER data system for EUV/UV SSI data distribution and real-time streaming, also taking into account the achievements of the FP7 SOLID (First European SOLar Irradiance Data Exploitation) project. For further progress it is imperative that coordinating activities in this special field of solar–terrestrial relations and solar physics is emphasized.

Schmidtke, G.; Avakyan, S.V.; Berdermann, J.; Bothmer, V.; Cessateur, G.; Ciraolo, L.; Didkovsky, L.; de Wit, Dudok; Eparvier, F.G.; Gottwald, A.; Haberreiter, M.; Hammer, R.; Jacobi, Ch.; Jakowski, N.; Kretzschmar, M.; Lilensten, J.; Pfeifer, M.; Radicella, S.M.; Schäfer, R.; Schmidt, W.; Solomon, S.C.; Thuillier, G.; Tobiska, W.K.; Wieman, S.; Woods, T.N.;

Published by: Advances in Space Research      Published on:

YEAR: 2015     DOI: https://doi.org/10.1016/j.asr.2015.07.043

UV/EUV solar spectral irradiance; Instrumentation; Calibration; Modeling

Solar wind driving of ionosphere-thermosphere responses during three storms on St. Patrick's Day.

Verkhoglyadova, Olga; Tsurutani, Bruce; Mannucci, Anthony; Komjathy, Attila; Mlynczak, Martin; Hunt, Linda; Paxton, Larry;

Published by:       Published on:

YEAR: 2015     DOI:

Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere

Azeem, Irfan; Yue, Jia; Hoffmann, Lars; Miller, Steven; Straka, William; Crowley, Geoff;

Published by: Geophysical research letters      Published on:

YEAR: 2015     DOI:

2014

Hemispheric distributions and interannual variability of NO y produced by energetic particle precipitation in 2002-2012

We investigate the interannual variability and hemispheric differences of reactive odd nitrogen produced by energetic particle precipitation (EPP-NOy) and transported into the stratosphere and lower mesosphere during polar winters in 2002\textendash2012. For this purpose, EPP-NOy amounts derived from observations of the Michelson Interferometer for Passive Atmospheric Sounding by means of a tracer correlation method have been used. Southern hemispheric (SH) seasonal maximum EPP-NOy amounts transported below the 0.02 hPa level range from 0.5GM to 2.5GM in the 2009 and 2003 winters, respectively. Northern hemispheric (NH) amounts were typically 2\textendash5 times smaller, with the exception of the 2003/2004 winter. This interhemispheric asymmetry is primarily caused by a reduction of the mesospheric descent rates in NH midwinter, as opposed to the SH. Hemispherically integrated NOy fluxes through given pressure levels reach up to 0.07GM/day at 0.1 hPa. A multilinear regression of the EPP-NOy evolution to the Ap index of the preceding months indicates that a large fraction of the SH interannual variability of EPP-NOy (excluding direct contributions by solar protons) can be linked to geomagnetic activity variations. This relationship holds throughout the winter and at all vertical levels where EPP-NOy is present. In the NH, a similar correlation is found until midwinter, however, breaking down afterward above 2 hPa in years with elevated stratopause occurrence. As an exception, EPP-NOy amounts in the Arctic winter 2004/2005 were much higher than in other NH winters with similar geomagnetic activity. We attribute this behavior to the unusually stable polar vortex in that winter, otherwise typical for the SH.

Funke, B.; opez-Puertas, M.; Holt, L.; Randall, C.; Stiller, G.; von Clarmann, T.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JD022423

Global distribution of atomic oxygen in the mesopause region as derived from SCIAMACHY O( 1 S) green line measurements

A new data set of atomic oxygen abundance in the upper mesosphere and lower thermosphere is presented. The data are derived from the nighttime atomic oxygen green line limb emission measurements of the SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) instrument on the European Environmental Satellite. The temporal coverage is October 2002 until April 2012, and the latitudinal extent is 50\textdegreeS to 80\textdegreeN at 10 P.M. local time. This data set is compared to other satellite data sets, in particular to recently published data of SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and the Mass Spectrometer and Incoherent Scatter model. SCIAMACHY atomic oxygen peak abundances are typically 3\textendash6\texttimes1011 mol/cm3 at the atomic oxygen maximum region, depending on latitude and season. These values are similar to previous values based on chemiluminescence measurements of the atomic oxygen three-body recombination reaction but at least 30\% lower than atomic oxygen abundances obtained from SABER.

Kaufmann, M.; Zhu, Y.; Ern, M.; Riese, M.;

Published by: Geophysical Research Letters      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1710.1002/2014GL060574

atomic oxygen; energy balance; mesopause; remote sensing data; SCIAMACHY

Interplanetary magnetic field By control of prompt total electron content increases during superstorms

Large magnitude increases in ionospheric total electron content (TEC) that occur over 1\textendash3\ h on the dayside are a significant manifestation of the main phases of superstorms. For the largest superstorms of solar cycle 23 (based on the Dst index), ground networks of GPS receivers measured peak total electron content increases greater than a factor of 2 relative to quiet time TEC averaged over the broad latitude band \textpm40\textdegree for local times 1200\textendash1600\ LT. Near 30\textdegree latitude, the Halloween storms of October 29\textendash30, 2003 appeared to produce storm-time TEC exceeding quiet time values by a factor of 5 within 2\textendash3\ h of storm onset, at 1300\ LT. The physical cause of these large positive phase ionospheric storms is usually attributed to prompt penetration electric fields (PPEFs) initiated by Region 1 current closure through the ionosphere ( Nopper and Carovillano, 1978 mechanism). An unresolved question is what determines variation of the TEC response for different superstorms. It has been suggested that the cross polar cap potential and Region 1 currents are significant factors in determining PPEF in the equatorial ionosphere, which are related to the solar wind reconnection electric field estimated by Kan\textendashLee and others. In this paper, we show evidence that suggests By may be a significant factor controlling the TEC response during the main phase of superstorms. We analyzed the interplanetary conditions during the period that TEC was increasing for eight superstorms. We find that increasing daytime TEC during superstorms only occurs for large reconnection electric fields when By magnitude is less than Bz. The data suggest that Bz is a far more important factor in the TEC response than the reconnection electric field. We also find that TEC decreases following its peak storm-time value for two superstorms, even though Bz remains large and By magnitudes are less than Bz. Such decreases during the geomagnetic disturbance may indicate the role of magnetospheric shielding currents, or of changes in the thermosphere that have developed over the prolonged period of large solar wind electric field. Further analysis is warranted covering a wider range of storm intensities on the role of By in affecting the daytime TEC response for a range of storm intensities.

Mannucci, A.J.; Crowley, G.; Tsurutani, B.T.; Verkhoglyadova, O.P.; Komjathy, A.; Stephens, P.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1016/j.jastp.2014.01.001

Geomagnetic storms; Ionosphere

Ionospheric TEC, thermospheric cooling and $\Sigma$ [O/N2] compositional changes during the 6--17 March 2012 magnetic storm interval (CAWSES II)

A series of four geomagnetic storms (the minimum SYM-H~-148\ nT) occurred during the March 6\textendash17, 2012 in the ascending phase of the solar cycle 24. This interval was selected by CAWSES II for its campaign. The GPS total electron content (TEC) database and JPL\textquoterights Global Ionospheric Maps (GIM) were used to study vertical TEC (VTEC) for different local times and latitude ranges. The largest response to geomagnetic activity is shown in increases of the low-latitude dayside VTEC. Several GPS sites feature post-afternoon VTEC \textquotedblleftbite-outs\textquotedblright. During Sudden Impulse (SI+) event on March 8th a peak daytime VTEC restores to about quiet-time values. It is shown that the TIMED/SABER zonal flux of nitric oxide (NO) infrared cooling radiation correlates well with auroral heating. A factor of ~5 cooling increase is noted in some storms. The cooling radiation intensifies in the auroral zone and spreads towards the equator. Effects of the storm appear at lower latitudes ~18.6\ h later. The column density ratio Σ[O/N2] is analyzed based on TIMED/GUVI measurements. Both increases (at low latitudes) and decreases (from auroral to middle latitudes) in the ratio occurs during the geomagnetic storms. We suggest that the column density ratio could be enhanced at low to middle latitudes on the dayside partially due to the superfountain effect (atomic oxygen uplift due to ion-neutral drag). It is suggested that decreases in the Σ[O/N2] ratio at high to middle-latitudes may be caused by high thermospheric temperatures. During SI+s, there is an increase in Σ[O/N2] ratio at auroral latitudes.

Verkhoglyadova, O.P.; Tsurutani, B.T.; Mannucci, A.J.; Mlynczak, M.G.; Hunt, L.A.; Paxton, L.J.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1016/j.jastp.2013.11.009

Geomagnetic storms; Ionosphere; thermosphere

2013

Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): external high speed stream drivers

We study solar wind\textendashionosphere coupling through the late declining phase/solar minimum and geomagnetic minimum phases during the last solar cycle (SC23) \textendash 2008 and 2009. This interval was characterized by sequences of high-speed solar wind streams (HSSs). The concomitant geomagnetic response was moderate geomagnetic storms and high-intensity, long-duration continuous auroral activity (HILDCAA) events. The JPL Global Ionospheric Map (GIM) software and the GPS total electron content (TEC) database were used to calculate the vertical TEC (VTEC) and estimate daily averaged values in separate latitude and local time ranges. Our results show distinct low- and mid-latitude VTEC responses to HSSs during this interval, with the low-latitude daytime daily averaged values increasing by up to 33 TECU (annual average of ~20 TECU) near local noon (12:00 to 14:00 LT) in 2008. In 2009 during the minimum geomagnetic activity (MGA) interval, the response to HSSs was a maximum of ~30 TECU increases with a slightly lower average value than in 2008. There was a weak nighttime ionospheric response to the HSSs. A well-studied solar cycle declining phase interval, 10\textendash22 October 2003, was analyzed for comparative purposes, with daytime low-latitude VTEC peak values of up to ~58 TECU (event average of ~55 TECU). The ionospheric VTEC changes during 2008\textendash2009 were similar but ~60\% less intense on average. There is an evidence of correlations of filtered daily averaged VTEC data with Ap index and solar wind speed.

We use the infrared NO and CO2 emission data obtained with SABER on TIMED as a proxy for the radiation balance of the thermosphere. It is shown that infrared emissions increase during HSS events possibly due to increased energy input into the auroral region associated with HILDCAAs. The 2008\textendash2009 HSS intervals were ~85\% less intense than the 2003 early declining phase event, with annual averages of daily infrared NO emission power of ~ 3.3 \texttimes 1010 W and 2.7 \texttimes 1010 W in 2008 and 2009, respectively. The roles of disturbance dynamos caused by high-latitude winds (due to particle precipitation and Joule heating in the auroral zones) and of prompt penetrating electric fields (PPEFs) in the solar wind\textendashionosphere coupling during these intervals are discussed. A correlation between geoeffective interplanetary electric field components and HSS intervals is shown. Both PPEF and disturbance dynamo mechanisms could play important roles in solar wind\textendashionosphere coupling during prolonged (up to days) external driving within HILDCAA intervals.

Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Runge, T.;

Published by: Annales Geophysicae      Published on: 01/2013

YEAR: 2013     DOI: 10.5194/angeo-31-263-2013

Ionosphere; Magnetospheric physics; Storms; substorms

Impact of rocket exhaust plumes on atmospheric composition and climate--an overview

Rockets are the only direct anthropogenic emission sources into the upper atmosphere. Gaseous rocket emissions include CO, N2, H2, H2O, and CO2, while solid rocket motors (SRM) additionally inject significant amounts of aluminum oxide (Al2O3) particles and gaseous chlorine species into the atmosphere. These emissions strongly perturb local atmospheric trace gas and aerosol distributions. Here, previous aircraft measurements in various rocket exhaust plumes including several large space shuttle launch vehicles are compiled. The observed changes of the lower stratospheric composition in the near field are summarized. The injection of chlorine species and particles into the stratosphere can lead to ozone loss in rocket exhaust plumes. Local observations are compared with global model simulations of the effects of rocket emissions on stratospheric ozone concentrations. Large uncertainties remain concerning individual ozone loss reaction rates and the impact of small-scale plume effects on global chemistry. Further, remote sensing data from satellite indicate that rocket exhaust plumes regionally increase iron and water vapor concentrations in the mesosphere potentially leading to the formation of mesospheric clouds at 80- to 90-kilometer altitude. These satellite observations are summarized and the rocket emission inventory is compared with other natural and anthropogenic sources to the stratosphere such as volcanism, meteoritic material, and aviation.

Voigt, Ch.; Schumann, U.; Graf, K.; Gottschaldt, K.-D.;

Published by:       Published on:

YEAR: 2013     DOI: 10.1051/eucass/201304657

Comparison of Ionospheric and Thermospheric Effects During Two High Speed Stream Events

Verkhoglyadova, OP; Tsurutani, B; Mannucci, AJ; Paxton, L; Mlynczak, MG; Hunt, LA; Echer, E;

Published by:       Published on:

YEAR: 2013     DOI:

2012

Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Science, Specifications and Forecasts

Schunk, Robert; Scherliess, L; Eccles, JV; Gardner, LC; Sojka, JJ; Zhu, L; Pi, X; Mannucci, A; Wilson, BD; Komjathy, A; , others;

Published by:       Published on:

YEAR: 2012     DOI:

2011

Propagation of plasma bubbles observed in Brazil from GPS and airglow data

Haase, J.S.; Dautermann, T.; Taylor, M.J.; Chapagain, N.; Calais, E.; Pautet, D.;

Published by: Advances in Space Research      Published on: Jan-05-2011

YEAR: 2011     DOI: 10.1016/j.asr.2010.09.025

Ionospheric VTEC and thermospheric infrared emission dynamics during corotating interaction region and high-speed stream intervals at solar minimum: 25 March to 26 April 2008

Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Komjathy, A.; Runge, T.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2011

YEAR: 2011     DOI: 10.1029/2011JA016604

2010

Estimating The Forces That Drive Ionosphere And Thermosphere Variability: Continuous Data And Assimilative Modeling

onosphere-thermosphere science has long been hampered by a lack of measurements of the underlying forces that determine plasma structure. These forces include electric fields, thermospheric composition, winds and solar EUV irradiance. All of these forces are dynamic quantities and of great importance to the underlying science. The rapid proliferation of electron density and total electron content measurements from ground and space-borne GPS receivers and other instruments suggests a great potential in the following indirect approach to estimating these forces: developing a model-based approach to retrieving the forces from the electron density structure and dynamics. The research community has just begun to explore such an approach, which addresses significant science questions previously out of reach.

Mannucci, Anthony; Pi, Xiaoqing; Butala, Mark; Stephens, Phil; Wilson, Brian; Komjathy, Attila; Iijima, Byron; Akopian, Vardan; Dumett, Miguel;

Published by: To advocate developing a model-based approach to retrieving the driving forces from measurements of electron density structure and dynamics      Published on:

YEAR: 2010     DOI:

2009

Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms

We investigate the effects of penetration electric fields, meridional thermospheric neutral winds, and composition perturbation zones (CPZs) on the distribution of low-latitude plasma during the 7\textendash11 November 2004 geomagnetic superstorm. The impact on low-latitude plasma was assessed using total electron content (TEC) measurements from a latitudinally distributed array of ground-based GPS receivers in South America. Jicamarca Radio Observatory incoherent scatter radar measurements of vertical E\texttimesB drift are used in combination with the Low-Latitude IONospheric Sector (LLIONS) model to examine how penetration electric fields and meridional neutral winds shape low-latitude TEC. It is found that superfountain conditions pertain between \~1900 and 2100UT on 9 November, creating enhanced equatorial ionization anomaly (EIA) crests at \textpm20\textdegree geomagnetic latitude. Large-amplitude and/or long-duration changes in the electric field were found to produce significant changes in EIA plasma density and latitudinal location, with a delay time of \~2\textendash2.5h. Superfountain drifts were primarily responsible for EIA TEC levels; meridional winds were needed only to create hemispherical crest TEC asymmetries. The [O/N2] density ratio (derived from the GUVI instrument, flown on the TIMED satellite) and measurements of total atmospheric density (from the GRACE satellites), combined with TEC measurements, yield information regarding a likely CPZ that appeared on 10 November, suppressing TEC for over 16h.

Mannucci, Anthony; Tsurutani, Bruce; Kelley, Michael; Iijima, Byron; Komjathy, Attila;

Published by: Journal of Geophysical Research      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.1029/2009JA014043

Overview and summary of the Spread F Experiment (SpreadFEx)

We provide here an overview of, and a summary of results arising from, an extensive experimental campaign (the Spread F Experiment, or SpreadFEx) performed from September to November 2005, with primary measurements in Brazil. The motivation was to define the potential role of neutral atmosphere dynamics, specifically gravity wave motions propagating upward from the lower atmosphere, in seeding Rayleigh-Taylor instability (RTI) and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12, and the GUVI instrument aboard the TIMED satellite.\ 

Initial results of our SpreadFEx analyses are described separately by Fritts et al. (2009). Further analyses of these data provide additional evidence of 1) gravity wave (GW) activity near the mesopause apparently linked to deep convection predominantly to the west of our measurement sites, 2) small-scale GWs largely confined to lower altitudes, 3) larger-scale GWs apparently penetrating to much higher altitudes, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent influences of these perturbations in the lower F-region on the formation of equatorial spread F, RTI, and plasma bubbles extending to much higher altitudes. Other efforts with SpreadFEx data have also yielded 6) the occurrence, locations, and scales of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, 8) 2-D (height-resolved) structures in electron density fluctuations and equatorial spread F at lower altitudes and plasma bubbles above, and 9) the occurrence of substantial tidal perturbations to the large-scale wind and temperature fields extending to bottomside F-layer and higher altitudes. Collectively, our various SpreadFEx analyses suggest direct links between deep tropical convection and large GW perturbations at large spatial scales at the bottomside F-layer and their likely contributions to the excitation of RTI and plasma bubbles extending to much higher altitudes.

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, P.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, F.; Sobral, J.; Stamus, P.; Takahashi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2141-2009

The Spread F Experiment (SpreadFEx): Program overview and first results

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, J.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, Sao; Sobral, J.; Stamus, P.; Takahasi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Earth Planets Space      Published on:

YEAR: 2009     DOI:

2008

XUV Photometer System (XPS): Improved Solar Irradiance Algorithm Using CHIANTI Spectral Models

Woods, Thomas; Chamberlin, Phillip; Peterson, W.; Meier, R.; Richards, Phil; Strickland, Douglas; Lu, Gang; Qian, Liying; Solomon, Stanley; Iijima, B.; Mannucci, A.; Tsurutani, B.;

Published by: Solar Physics      Published on: Jan-08-2008

YEAR: 2008     DOI: 10.1007/s11207-008-9196-6

2007

Space-based research into the ionosphere-thermosphere system: The need for greater organization and a plan for achieving it

Clemmons, JH; Crowley, G; Heelis, RA; Mannucci, AJ; Paxton, LJ; Pfaff, RF; Spann, JF;

Published by:       Published on:

YEAR: 2007     DOI:

Using Satellite Measurements to Evaluate Clouds And Their Seasonal Variations in 10 Atmospheric General Circulation Models

Zhang, M; Lin, W; Klein, S; Backmeister, J; Bony, S; Cederwall, R; Del Genio, A; Hack, J; Loeb, N; Lohmann, U; , others;

Published by:       Published on:

YEAR: 2007     DOI:

2006

Global thermosphere-ionosphere response to onset of 20 November 2003 magnetic storm

Crowley, G.; Hackert, C.; Meier, R.; Strickland, D.; Paxton, L.; Pi, X.; Mannucci, A.; Christensen, A.; Morrison, D.; Bust, G.; Roble, R.; Curtis, N.; Wene, G.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2006

YEAR: 2006     DOI: 10.1029/2005JA011518

Ionospheric behavior during the first few hours of intense geomagnetic storms

Mannucci, Anthony; Crowley, Geoff; Tsurutani, Bruce; Fuller-Rowell, Tim;

Published by:       Published on:

YEAR: 2006     DOI:

GNSS-based space weather systems including COSMIC ionospheric measurements

LORAAS on ARGOS, GUVI on TIMED SSUSI/SSULI on DMSP TIP on COSMIC

Komjathy, Attila; Mandrake, Lukas; Wilson, Brian; Iijima, Byron; Pi, Xiaoqing; Hajj, George; Mannucci, Anthony;

Published by:       Published on:

YEAR: 2006     DOI:

Investigating the state of the Sun-Earth system during extreme events: First science results of a worldwide online conference series

Kozyra, JU; Shibata, K; Fox, NJ; Basu, S; Coster, AJ; Davila, JM; Gopalswamy, N; Liou, K; Lu, G; Mann, IR; , others;

Published by:       Published on:

YEAR: 2006     DOI:

2005

The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event

Some of the most intense solar flares measured in 0.1 to 0.8 nm x-rays in recent history occurred near the end of 2003. The Nov 4 event is the largest in the NOAA records (X28) and the Oct 28 flare was the fourth most intense (X17). The Oct 29 flare was class X7. These flares are compared and contrasted to the July 14, 2000 Bastille Day (X10) event using the SOHO SEM 26.0 to 34.0 nm EUV and TIMED SEE 0.1\textendash194 nm data. High time resolution, \~30s ground-base GPS data and the GUVI FUV dayglow data are used to examine the flare-ionosphere relationship. In the 26.0 to 34.0 nm wavelength range, the Oct 28 flare is found to have a peak intensity greater than twice that of the Nov 4 flare, indicating strong spectral variability from flare-to-flare. Solar absorption of the EUV portion of the Nov 4 limb event is a possible cause. The dayside ionosphere responds dramatically (\~2.5 min 1/e rise time) to the x-ray and EUV input by an abrupt increase in total electron content (TEC). The Oct 28 TEC ionospheric peak enhancement at the subsolar point is \~25 TECU (25 \texttimes 1012 electrons/cm2) or 30\% above background. In comparison, the Nov 4, Oct 29 and the Bastille Day events have \~5\textendash7 TECU peak enhancements above background. The Oct 28 TEC enhancement lasts \~3 hrs, far longer than the flare duration. This latter ionospheric feature is consistent with increased electron production in the middle altitude ionosphere, where recombination rates are low. It is the EUV portion of the flare spectrum that is responsible for photoionization of this region. Further modeling will be necessary to fully understand the detailed physics and chemistry of flare-ionosphere coupling.

Tsurutani, B.; Judge, D.; Guarnieri, F.; Gangopadhyay, P.; Jones, A.; Nuttall, J.; Zambon, G.A.; Didkovsky, L.; Mannucci, A.J.; Iijima, B.; Meier, R.; Immel, T.J.; Woods, T.; Prasad, S.; Floyd, L.; Huba, J.; Solomon, S.; Straus, P.; Viereck, R.;

Published by: Geophysical Research Letters      Published on: 02/2005

YEAR: 2005     DOI: 10.1029/2004GL021475



  1