Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2012

Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil

Equatorial ionospheric responses during two magnetic storms of moderate intensity are investigated, for the first time, by conjugate point observations in Brazil. The study focuses on storm-induced changes in the evening prereversal vertical drift, thermospheric trans-equatorial winds, spread F/plasma bubble irregularity development, electron density/plasma frequency heights, the EIA strength, and zonal plasma drifts. It is based on data obtained from five Digisondes operated in Brazil, three of them being part of a conjugate point equatorial experiment (COPEX) involving a dip equatorial and two magnetic conjugate sites at \textpm12\textdegree. The other two were operated at the equatorial ionization anomaly (EIA) trough and crest locations at nearby magnetic meridians. The results bring out, and clarify, many outstanding aspects of the strong influence of storm time electric fields on the equatorial ionosphere at different phases of the two long lasting storm sequences. During both storms prompt penetration electric fields dominated the ionospheric response features as compared to the disturbance wind dynamo effects that were not very conspicuous. An under-shielding (over-shielding) electric field occurring in the evening hours causes enhancement (suppression) of the prereversal vertical drift and post sunset spread F/plasma bubble generation. The same electric fields cause post sunset EIA enhancement and suppression, respectively. Post sunset (post midnight) spread F can develop from under-shielding (over-shielding) electric fields, while it can be disrupted by over-shielding (under-shielding) electric field. Trans-equatorial winds are found to be ineffective to stabilize the post sunset F region against the destabilizing effect of strong prereversal vertical drift. Storm time westward plasma drifts are found to be driven by prompt penetration eastward electric fields (through their effect of inducing vertical Hall electric fields), rather than by a disturbance westward thermospheric wind during these storms.

Abdu, M.; Batista, I.; Bertoni, F.; Reinisch, B.; Kherani, E.; Sobral, J.;

Published by: Journal of Geophysical Research      Published on: 05/2012

YEAR: 2012     DOI: 10.1029/2011JA017174

Equatorial ionosphere; Magnetic storms; plasma bubbles; plasma drifts; spread F; transequatorial winds

2010

Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly

Muella, M.; Kherani, E.; de Paula, E.; Cerruti, A.; Kintner, P.; Kantor, I.; Mitchell, C.; Batista, I.; Abdu, M.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2010

YEAR: 2010     DOI: 10.1029/2009JA014788

2009

Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign

The data from ground based experiments conducted during the 2005 SpreadFEx campaign in Brazil are used, with the help of theoretical model calculations, to investigate the precursor conditions, and especially, the role of gravity waves, in the instability initiation leading to equatorial spread F development. Data from a digisonde and a 30 MHz coherent back-scatter radar operated at an equatorial site, Sao Luis (dip angle: 2.7\textdegree) and from a digisonde operated at another equatorial site (dip angle: -11.5\textdegree) are analyzed during selected days representative of differing precursor conditions of the evening prereversal vertical drift, F layer bottom-side density gradients and density perturbations due to gravity waves. It is found that radar irregularity plumes indicative of topside bubbles, can be generated for precursor vertical drift velocities exceeding 30 m/s even when the precursor GW induced density oscillations are marginally detectable by the digisonde. For drift velocities <=20 m/s the presence of precursor gravity waves of detectable intensity is found to be a necessary condition for spread F instability initiation. Theoretical model calculations show that the zonal polarization electric field in an instability development, even as judged from its linear growth phase, can be significantly enhanced under the action of perturbation winds from gravity waves. Comparison of the observational results with the theoretical model calculations provides evidence for gravity wave seeding of equatorial spread F.

Abdu, M.; Kherani, Alam; Batista, I.; de Paula, E.; Fritts, D.; Sobral, J.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2607-2009

Overview and summary of the Spread F Experiment (SpreadFEx)

We provide here an overview of, and a summary of results arising from, an extensive experimental campaign (the Spread F Experiment, or SpreadFEx) performed from September to November 2005, with primary measurements in Brazil. The motivation was to define the potential role of neutral atmosphere dynamics, specifically gravity wave motions propagating upward from the lower atmosphere, in seeding Rayleigh-Taylor instability (RTI) and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12, and the GUVI instrument aboard the TIMED satellite.\ 

Initial results of our SpreadFEx analyses are described separately by Fritts et al. (2009). Further analyses of these data provide additional evidence of 1) gravity wave (GW) activity near the mesopause apparently linked to deep convection predominantly to the west of our measurement sites, 2) small-scale GWs largely confined to lower altitudes, 3) larger-scale GWs apparently penetrating to much higher altitudes, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent influences of these perturbations in the lower F-region on the formation of equatorial spread F, RTI, and plasma bubbles extending to much higher altitudes. Other efforts with SpreadFEx data have also yielded 6) the occurrence, locations, and scales of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, 8) 2-D (height-resolved) structures in electron density fluctuations and equatorial spread F at lower altitudes and plasma bubbles above, and 9) the occurrence of substantial tidal perturbations to the large-scale wind and temperature fields extending to bottomside F-layer and higher altitudes. Collectively, our various SpreadFEx analyses suggest direct links between deep tropical convection and large GW perturbations at large spatial scales at the bottomside F-layer and their likely contributions to the excitation of RTI and plasma bubbles extending to much higher altitudes.

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, P.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, F.; Sobral, J.; Stamus, P.; Takahashi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2141-2009

The Spread F Experiment (SpreadFEx): Program overview and first results

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, J.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, Sao; Sobral, J.; Stamus, P.; Takahasi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Earth Planets Space      Published on:

YEAR: 2009     DOI:



  1