Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 10 entries in the Bibliography.


Showing entries from 1 through 10


2018

The ionospheric connection explorer mission: Mission goals and design

The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection

Immel, Thomas; England, SL; Mende, SB; Heelis, RA; Englert, CR; Edelstein, J; Frey, HU; Korpela, EJ; Taylor, ER; Craig, WW; , others;

Published by: Space Science Reviews      Published on:

YEAR: 2018     DOI: 10.1007/s11214-017-0449-2

2011

Propagation of plasma bubbles observed in Brazil from GPS and airglow data

Haase, J.S.; Dautermann, T.; Taylor, M.J.; Chapagain, N.; Calais, E.; Pautet, D.;

Published by: Advances in Space Research      Published on: Jan-05-2011

YEAR: 2011     DOI: 10.1016/j.asr.2010.09.025

2010

Radar, lidar, and optical observations in the polar summer mesosphere shortly after a space shuttle launch

Kelley, M.; Nicolls, M.; Varney, R.; Collins, R.; Doe, R.; Plane, J.; Thayer, J.; Taylor, M.; Thurairajah, B.; Mizutani, K.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2010

YEAR: 2010     DOI: 10.1029/2009JA014938

2009

Estimation of electron densities in the lower thermosphere from GUVI 135.6 nm tomographic inversions in support of SpreadFEx

Kamalabadi, F.; Comberiate, J.; Taylor, M.; Pautet, P.-D.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2439-2009

Overview and summary of the Spread F Experiment (SpreadFEx)

We provide here an overview of, and a summary of results arising from, an extensive experimental campaign (the Spread F Experiment, or SpreadFEx) performed from September to November 2005, with primary measurements in Brazil. The motivation was to define the potential role of neutral atmosphere dynamics, specifically gravity wave motions propagating upward from the lower atmosphere, in seeding Rayleigh-Taylor instability (RTI) and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12, and the GUVI instrument aboard the TIMED satellite.\ 

Initial results of our SpreadFEx analyses are described separately by Fritts et al. (2009). Further analyses of these data provide additional evidence of 1) gravity wave (GW) activity near the mesopause apparently linked to deep convection predominantly to the west of our measurement sites, 2) small-scale GWs largely confined to lower altitudes, 3) larger-scale GWs apparently penetrating to much higher altitudes, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent influences of these perturbations in the lower F-region on the formation of equatorial spread F, RTI, and plasma bubbles extending to much higher altitudes. Other efforts with SpreadFEx data have also yielded 6) the occurrence, locations, and scales of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, 8) 2-D (height-resolved) structures in electron density fluctuations and equatorial spread F at lower altitudes and plasma bubbles above, and 9) the occurrence of substantial tidal perturbations to the large-scale wind and temperature fields extending to bottomside F-layer and higher altitudes. Collectively, our various SpreadFEx analyses suggest direct links between deep tropical convection and large GW perturbations at large spatial scales at the bottomside F-layer and their likely contributions to the excitation of RTI and plasma bubbles extending to much higher altitudes.

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, P.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, F.; Sobral, J.; Stamus, P.; Takahashi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2141-2009

Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign

Takahashi, H.; Taylor, M.; Pautet, P.-D.; Medeiros, A.; Gobbi, D.; Wrasse, C.; Fechine, J.; Abdu, M.; Batista, I.; Paula, E.; Sobral, J.; Arruda, D.; Vadas, S.; Sabbas, F.; Fritts, D.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-1477-2009

Simultaneous observations of equatorial F-region plasma depletions over Brazil during the Spread-F Experiment (SpreadFEx)

Pautet, P.-D.; Taylor, M.; Chapagain, N.; Takahashi, H.; Medeiros, A.; Sabbas, F.; Fritts, D.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2371-2009

The Spread F Experiment (SpreadFEx): Program overview and first results

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, J.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, Sao; Sobral, J.; Stamus, P.; Takahasi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Earth Planets Space      Published on:

YEAR: 2009     DOI:

2008

Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx)

The Spread F Experiment, or SpreadFEx, was performed from September to November 2005 to define the potential role of neutral atmosphere dynamics, primarily gravity waves propagating upward from the lower atmosphere, in seeding equatorial spread F (ESF) and plasma bubbles extending to higher altitudes. A description of the SpreadFEx campaign motivations, goals, instrumentation, and structure, and an overview of the results presented in this special issue, are provided by Fritts et al. (2008a). The various analyses of neutral atmosphere and ionosphere dynamics and structure described in this special issue provide enticing evidence of gravity waves arising from deep convection in plasma bubble seeding at the bottomside F layer. Our purpose here is to employ these results to estimate gravity wave characteristics at the bottomside F layer, and to assess their possible contributions to optimal seeding conditions for ESF and plasma instability growth rates. We also assess expected tidal influences on the environment in which plasma bubble seeding occurs, given their apparent large wind and temperature amplitudes at these altitudes. We conclude 1) that gravity waves can achieve large amplitudes at the bottomside F layer, 2) that tidal winds likely control the orientations of the gravity waves that attain the highest altitudes and have the greatest effects, 3) that the favored gravity wave orientations enhance most or all of the parameters influencing plasma instability growth rates, and 4) that gravity wave and tidal structures acting together have an even greater potential impact on plasma instability growth rates and plasma bubble seeding.

Fritts, D.; Vadas, S.; Riggin, D.; Abdu, M.; Batista, I.; Takahashi, H.; Medeiros, A.; Kamalabadi, F.; Liu, H.-L.; Fejer, B.; Taylor, M.;

Published by: Annales Geophysicae      Published on: 10/2008

YEAR: 2008     DOI: 10.5194/angeo-26-3235-2008

2007

Simultaneous observation of ionospheric plasma bubble and mesospheric gravity wave activities during CAWSES 2005 SpreadFEx Campaign

During the SpreadFEx campaign from September 22 to November 8, 2005, two airglow CCD imagers, located at near Brasilia (14.8S, 47.6W, Mag. 10S) and at Cariri (7.4S, 36.5W, Mag. 9S) were operated simultaneously and measured the equatorial ionospheric bubble structures and their time evolution by monitoring the OI 6300 emission. From the 10 nights of coincident data, we observed that on some nights the bubbles was formed at the west of Cariri, but not seen from the Brasilia site. This suggests that the bubble formation and development started near the Cariri observation site. Identification of a longitudinal zone where the SpF is seeding is very important in order to find the mechanism of formation. The present paper will discuss SpF seeding mechanisms and possible contribution of the mesospheric gravity wave activity.

Takahashi*, H.; Pautet, P.-D.; Fechine, J.; Abdu, M.; Batista, I.; Paula, E.; Sobral, J.H.A.; Gobbi, D.; Arruda, D.; Batista, P.; Sabba, F.; Taylor, M.; Medeiros, A.; Buriti, R.; Wrasse, C.; Fritts, D.;

Published by:       Published on:

YEAR: 2007     DOI: 10.1190/sbgf2007-404



  1