Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

Neutral composition information in ICON EUV dayglow observations

Since the earliest space‐based observations of Earth s atmosphere, ultraviolet (UV) airglow has proven a useful resource for remote sensing of the ionosphere and thermosphere. The

Tuminello, Richard; England, Scott; Sirk, Martin; Meier, Robert; Stephan, Andrew; Korpela, Eric; Immel, Thomas; Mende, Stephen; Frey, Harald;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030592

2021

First Results From the Retrieved Column O/N2 Ratio From the Ionospheric Connection Explorer (ICON): Evidence of the Impacts of Nonmigrating Tides

In near-Earth space, variations in thermospheric composition have important implications for thermosphere-ionosphere coupling. The ratio of O to N2 is often measured using far-UV airglow observations. Taking such airglow observations from space, looking below the Earth s limb allows for the total column of O and N2 in the ionosphere to be determined. While these observations have enabled many previous studies, determining the impact of nonmigrating tides on thermospheric composition has proved difficult, owing to a small contamination of the signal by recombination of ionospheric O+. New ICON observations of far-UV are presented here, and their general characteristics are shown. Using these, along with other observations and a global circulation model, we show that during the morning hours and at latitudes away from the peak of the equatorial ionospheric anomaly, the impact of nonmigrating tides on thermospheric composition can be observed. During March–April 2020, the column O/N2 ratio was seen to vary by 3–4\% of the zonal mean. By comparing the amplitude of the variation observed with that in the model, both the utility of these observations and a pathway to enable future studies is shown.

England, Scott; Meier, R.; Frey, Harald; Mende, Stephen; Stephan, Andrew; Krier, Christopher; Cullens, Chihoko; Wu, Yen-Jung; Triplett, Colin; Sirk, Martin; Korpela, Eric; Harding, Brian; Englert, Christoph; Immel, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029575

airglow; atmospheric composition; Atmospheric tides; thermosphere

2018

The ionospheric connection explorer mission: Mission goals and design

The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection

Immel, Thomas; England, SL; Mende, SB; Heelis, RA; Englert, CR; Edelstein, J; Frey, HU; Korpela, EJ; Taylor, ER; Craig, WW; , others;

Published by: Space Science Reviews      Published on:

YEAR: 2018     DOI: 10.1007/s11214-017-0449-2

2017

Daytime Ionosphere Retrieval Algorithm for the Ionospheric Connection Explorer (ICON)

The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7\ nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated O+ density profile from 150\textendash450\ km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5\ km accuracy, and NmF2 to better than 12\% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20\ km vertical resolution in hmF2 and 18\% precision in NmF2.

Stephan, Andrew; Korpela, Eric; Sirk, Martin; England, Scott; Immel, Thomas;

Published by: Space Science Reviews      Published on: 10/2017

YEAR: 2017     DOI: 10.1007/s11214-017-0385-1



  1