Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2021

Ionospheric Response Over Brazil to the August 2018 Geomagnetic Storm as Probed by CSES-01 and Swarm Satellites and by Local Ground-Based Observations

The geomagnetic storm that occurred on 25 August 25 2018, that is, during the minimum of solar cycle 24, is currently the strongest ever probed by the first China Seismo-Electromagnetic Satellite (CSES-01). By integrating the in situ measurements provided by CSES-01 (orbiting at altitude of 507 km) and by Swarm A satellite (orbiting at ca., 460 km) with ground-based observations (ionosondes, magnetometers, and Global Navigation Satellite System receivers), we investigate the ionospheric response at lower- and mid-latitudes over Brazil. Specifically, we investigate the electrodynamic disturbances driven by solar wind changes, by focusing on the disturbances driving modifications of the equatorial electrojet (EEJ). Our proposed multisensor technique analysis mainly highlights the variations in the topside and bottomside ionosphere, and the interplay between prompt penetrating electric fields and disturbance dynamo electric fields resulting in EEJ variations. Thanks to this approach and leveraging on the newly available CSES-01 data, we complement and extend what recently investigated in the Western South American sector, by highlighting the significant longitudinal differences, which mainly come from the occurrence of a daytime counter-EEJ during both 25 and 26 August at Braziliian longitudes and during part of 26 August only in the Peruvian sector. In addition, the increased thermospheric circulation driven by the storm has an impact on the EEJ during the recovery phase of the storm. The observations at the CSES-01/Swarm altitudes integrated with the ground-based observation recorded signatures of equatorial ionospheric anomaly crests formation and modification during daytime coupled with the positive ionospheric storm effects at midlatitude.

Spogli, L.; Sabbagh, D.; Regi, M.; Cesaroni, C.; Perrone, L.; Alfonsi, L.; Di Mauro, D.; Lepidi, S.; Campuzano, S.; Marchetti, D.; De Santis, A.; Malagnini, A.; Scotto, C.; Cianchini, G.; Shen, Xu; Piscini, A.; Ippolito, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028368

Geomagnetic storms; Equatorial Electrojet; in situ plasma density; ionospheric elctroduamics; Ionospheric storms; low-latitude ionosphere

2009

Overview and summary of the Spread F Experiment (SpreadFEx)

We provide here an overview of, and a summary of results arising from, an extensive experimental campaign (the Spread F Experiment, or SpreadFEx) performed from September to November 2005, with primary measurements in Brazil. The motivation was to define the potential role of neutral atmosphere dynamics, specifically gravity wave motions propagating upward from the lower atmosphere, in seeding Rayleigh-Taylor instability (RTI) and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12, and the GUVI instrument aboard the TIMED satellite.\ 

Initial results of our SpreadFEx analyses are described separately by Fritts et al. (2009). Further analyses of these data provide additional evidence of 1) gravity wave (GW) activity near the mesopause apparently linked to deep convection predominantly to the west of our measurement sites, 2) small-scale GWs largely confined to lower altitudes, 3) larger-scale GWs apparently penetrating to much higher altitudes, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent influences of these perturbations in the lower F-region on the formation of equatorial spread F, RTI, and plasma bubbles extending to much higher altitudes. Other efforts with SpreadFEx data have also yielded 6) the occurrence, locations, and scales of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, 8) 2-D (height-resolved) structures in electron density fluctuations and equatorial spread F at lower altitudes and plasma bubbles above, and 9) the occurrence of substantial tidal perturbations to the large-scale wind and temperature fields extending to bottomside F-layer and higher altitudes. Collectively, our various SpreadFEx analyses suggest direct links between deep tropical convection and large GW perturbations at large spatial scales at the bottomside F-layer and their likely contributions to the excitation of RTI and plasma bubbles extending to much higher altitudes.

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, P.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, F.; Sobral, J.; Stamus, P.; Takahashi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2141-2009

Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign

Takahashi, H.; Taylor, M.; Pautet, P.-D.; Medeiros, A.; Gobbi, D.; Wrasse, C.; Fechine, J.; Abdu, M.; Batista, I.; Paula, E.; Sobral, J.; Arruda, D.; Vadas, S.; Sabbas, F.; Fritts, D.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-1477-2009

Simultaneous observations of equatorial F-region plasma depletions over Brazil during the Spread-F Experiment (SpreadFEx)

Pautet, P.-D.; Taylor, M.; Chapagain, N.; Takahashi, H.; Medeiros, A.; Sabbas, F.; Fritts, D.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2371-2009

The Spread F Experiment (SpreadFEx): Program overview and first results

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, J.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, Sao; Sobral, J.; Stamus, P.; Takahasi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Earth Planets Space      Published on:

YEAR: 2009     DOI:

2007

Simultaneous observation of ionospheric plasma bubble and mesospheric gravity wave activities during CAWSES 2005 SpreadFEx Campaign

During the SpreadFEx campaign from September 22 to November 8, 2005, two airglow CCD imagers, located at near Brasilia (14.8S, 47.6W, Mag. 10S) and at Cariri (7.4S, 36.5W, Mag. 9S) were operated simultaneously and measured the equatorial ionospheric bubble structures and their time evolution by monitoring the OI 6300 emission. From the 10 nights of coincident data, we observed that on some nights the bubbles was formed at the west of Cariri, but not seen from the Brasilia site. This suggests that the bubble formation and development started near the Cariri observation site. Identification of a longitudinal zone where the SpF is seeding is very important in order to find the mechanism of formation. The present paper will discuss SpF seeding mechanisms and possible contribution of the mesospheric gravity wave activity.

Takahashi*, H.; Pautet, P.-D.; Fechine, J.; Abdu, M.; Batista, I.; Paula, E.; Sobral, J.H.A.; Gobbi, D.; Arruda, D.; Batista, P.; Sabba, F.; Taylor, M.; Medeiros, A.; Buriti, R.; Wrasse, C.; Fritts, D.;

Published by:       Published on:

YEAR: 2007     DOI: 10.1190/sbgf2007-404



  1