Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 10 entries in the Bibliography.


Showing entries from 1 through 10


2021

Equatorial Ionospheric Electrodynamics

The low-latitude ionosphere is one of the most dynamic regions of the Earth s upper atmosphere. The morphology of this region is controlled by radiative and coupled chemical, neutral, and plasma transport processes. Equatorial electrodynamics plays a fundamental role on the low-latitude plasma density, total electron content (TEC), and plasma structures and waves extending from the E-region to the protonosphere. Ground-based and satellite measurements over the last six decades determined the climatology of quiet- and storm-time equatorial electrodynamic processes. Extensive theoretical and numerical simulations, particularly in the last two decades, investigated the main electrodynamic driving mechanisms. These combined studies have led to major advances in the understanding of the short-term variability of equatorial electrodynamics, which is essential for the accurate forecast of low-latitude ionospheric weather, and its effects on ground- and space-based technological systems. In this work, we review the main properties of low-latitude electrodynamics, focusing on recent results of the equatorial ambient plasma drifts, which are the main drivers of low-latitude ionospheric weather. We also briefly mention some outstanding questions and suggest possible future directions for their more complete understanding.

Fejer, Bela; Maute, Astrid;

Published by:       Published on:

YEAR: 2021     DOI: 10.1002/9781119815617.ch9

total electron content; equatorial ionospheric electrodynamics; low-latitude plasma density; quiet-time equatorial plasma drifts; storm-time equatorial electric fields

2016

Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector

We studied the response of the ionosphere (F region) in the Brazilian sector during extreme space weather event of 17 March 2015 using a large network of 102 GPS- total electron content (TEC) stations. It is observed that the vertical total electron content (VTEC) was severely disturbed during the storm main and recovery phases. A wavelike oscillation with three peaks was observed in the TEC diurnal variation from equator to low latitudes during the storm main phase on 17\textendash18 March 2015. The latitudinal extent of the wavelike oscillation peaks decreased from the beginning of the main phase toward the recovery phase. The first peak extended from beyond 0\textdegreeS to 30\textdegreeS, the second occurred from 6\textdegreeS to 25\textdegreeS, whereas the third diurnal peaks was confined from 13\textdegreeS to 25\textdegreeS. In addition, a strong negative phase in VTEC variations was observed during the recovery phase on 18\textendash19 March 2015. This ionospheric negative phase was stronger at low latitudes than in the equatorial region. Also, two latitudinal chains of GPS-TEC stations from equatorial region to low latitudes in the east and west Brazilian sectors are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA) in the east and west Brazilian sectors. We observed an anomalous behavior in EIA caused by the wavelike oscillations during the storm main phase on 17 March, and suppression of the EIA, resulting from the negative phase in VTEC, in the storm recovery phase.

Fagundes, P.; Cardoso, F.; Fejer, B.; Venkatesh, K.; Ribeiro, B.; Pillat, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022214

Scale analysis of equatorial plasma irregularities derived from Swarm constellation

In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation

Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela; Kervalishvili, Guram;

Published by: Earth, Planets and Space      Published on:

YEAR: 2016     DOI: 10.1186/s40623-016-0502-5

2011

The Storm Time Energy and Dynamics Explorers

Swenson, C; Fish, CS; Crowley, G; Earle, GD; Anderson, BJ; Dyrud, LP; Carlson, HC; Erickson, PJ; Fejer, BG; Mertens, CJ; , others;

Published by:       Published on:

YEAR: 2011     DOI:

2009

Overview and summary of the Spread F Experiment (SpreadFEx)

We provide here an overview of, and a summary of results arising from, an extensive experimental campaign (the Spread F Experiment, or SpreadFEx) performed from September to November 2005, with primary measurements in Brazil. The motivation was to define the potential role of neutral atmosphere dynamics, specifically gravity wave motions propagating upward from the lower atmosphere, in seeding Rayleigh-Taylor instability (RTI) and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12, and the GUVI instrument aboard the TIMED satellite.\ 

Initial results of our SpreadFEx analyses are described separately by Fritts et al. (2009). Further analyses of these data provide additional evidence of 1) gravity wave (GW) activity near the mesopause apparently linked to deep convection predominantly to the west of our measurement sites, 2) small-scale GWs largely confined to lower altitudes, 3) larger-scale GWs apparently penetrating to much higher altitudes, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent influences of these perturbations in the lower F-region on the formation of equatorial spread F, RTI, and plasma bubbles extending to much higher altitudes. Other efforts with SpreadFEx data have also yielded 6) the occurrence, locations, and scales of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, 8) 2-D (height-resolved) structures in electron density fluctuations and equatorial spread F at lower altitudes and plasma bubbles above, and 9) the occurrence of substantial tidal perturbations to the large-scale wind and temperature fields extending to bottomside F-layer and higher altitudes. Collectively, our various SpreadFEx analyses suggest direct links between deep tropical convection and large GW perturbations at large spatial scales at the bottomside F-layer and their likely contributions to the excitation of RTI and plasma bubbles extending to much higher altitudes.

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, P.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, F.; Sobral, J.; Stamus, P.; Takahashi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Annales Geophysicae      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.5194/angeo-27-2141-2009

The Spread F Experiment (SpreadFEx): Program overview and first results

Fritts, D.; Abdu, M.; Batista, B.; Batista, I.; Batista, P.; Buriti, R.; Clemesha, B.; Dautermann, T.; de Paula, E.; Fechine, B.; Fejer, B.; Gobbi, D.; Haase, J.; Kamalabadi, F.; Kherani, E.; Laughman, B.; Lima, J.; Liu, H.-L.; Medeiros, A.; Pautet, P.-D.; Riggin, D.; Rodrigues, F.; Sabbas, Sao; Sobral, J.; Stamus, P.; Takahasi, H.; Taylor, M.; Vadas, S.; Vargas, F.; Wrasse, C.;

Published by: Earth Planets Space      Published on:

YEAR: 2009     DOI:

Relative effects of electric field and neutral wind on positive ionospheric storms

The paper studies the relative importance of penetrating eastward electric field (PEEF) and direct effects of equatorward neutral wind in leading to positive ionospheric storms at low-mid

Balan, N; Alleyne, H; Otsuka, Y; Lekshmi, Vijaya; Fejer, BG; McCrea, I;

Published by: Earth, planets and space      Published on:

YEAR: 2009     DOI:

2008

Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx)

The Spread F Experiment, or SpreadFEx, was performed from September to November 2005 to define the potential role of neutral atmosphere dynamics, primarily gravity waves propagating upward from the lower atmosphere, in seeding equatorial spread F (ESF) and plasma bubbles extending to higher altitudes. A description of the SpreadFEx campaign motivations, goals, instrumentation, and structure, and an overview of the results presented in this special issue, are provided by Fritts et al. (2008a). The various analyses of neutral atmosphere and ionosphere dynamics and structure described in this special issue provide enticing evidence of gravity waves arising from deep convection in plasma bubble seeding at the bottomside F layer. Our purpose here is to employ these results to estimate gravity wave characteristics at the bottomside F layer, and to assess their possible contributions to optimal seeding conditions for ESF and plasma instability growth rates. We also assess expected tidal influences on the environment in which plasma bubble seeding occurs, given their apparent large wind and temperature amplitudes at these altitudes. We conclude 1) that gravity waves can achieve large amplitudes at the bottomside F layer, 2) that tidal winds likely control the orientations of the gravity waves that attain the highest altitudes and have the greatest effects, 3) that the favored gravity wave orientations enhance most or all of the parameters influencing plasma instability growth rates, and 4) that gravity wave and tidal structures acting together have an even greater potential impact on plasma instability growth rates and plasma bubble seeding.

Fritts, D.; Vadas, S.; Riggin, D.; Abdu, M.; Batista, I.; Takahashi, H.; Medeiros, A.; Kamalabadi, F.; Liu, H.-L.; Fejer, B.; Taylor, M.;

Published by: Annales Geophysicae      Published on: 10/2008

YEAR: 2008     DOI: 10.5194/angeo-26-3235-2008

F3 layer during penetration electric field

The occurrence of an additional layer, called F3 layer, in the equatorial ionosphere at American, Indian, and Australian longitudes during the super double geomagnetic storm of 7–11 November 2004 is presented using observations and modeling. The observations show the occurrence, reoccurrence, and quick ascent to the topside ionosphere of unusually strong F3 layer in Australian longitude during the first super storm (8 November) and in Indian longitude during the second super storm (10 November), all with large reductions in peak electron density (Nmax) and total electron content (GPS-TEC). The unusual F3 layers can arise mainly from unusually strong fluctuations in the daytime vertical E × B drift as indicated by the observations and modeling in American longitude. The strongest upward E × B drift (or eastward prompt penetration electric field, PPEF) ever recorded (at Jicamarca) produces unusually strong F3 layer in the afternoon hours (≈1400–1600 LT) of PPEF, with large reductions in Nmax and TEC; the layer also reappears in the following evening (≈1700–1800 LT) owing to an unusually large downward drift. At night, when the drift is unusually upward and strong, the F region splits into two layers.

Balan, N.; Thampi, S.; Lynn, K.; Otsuka, Y.; Alleyne, H.; Watanabe, S.; Abdu, M.; Fejer, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI: https://doi.org/10.1029/2008JA013206

F3 layer; penetration; Electric field

2004

Studies in Equatorial Anomaly Morphology from 2002-03 GUVI Data

Henderson, S; Fejer, B; Swenson, C;

Published by:       Published on:

YEAR: 2004     DOI:



  1