Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 68 entries in the Bibliography.


Showing entries from 1 through 50


2022

Importance of lower atmospheric forcing and magnetosphere-ionosphere coupling in simulating neutral density during the February 2016 geomagnetic storm

During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in eg, the dynamics, composition

Maute, Astrid; Lu, Gang; Knipp, Delores; Anderson, Brian; Vines, Sarah;

Published by: Frontiers in Astronomy and Space Sciences      Published on:

YEAR: 2022     DOI: 10.3389/fspas.2022.932748

Occurrence statistics of horse collar aurora

Bower, Gemma; Milan, Stephen; Paxton, Larry; Anderson, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI:

Height-integrated polar cap conductances during an average substorm

Carter, Jennifer; Milan, Steven; Lester, Mark; Forsyth, Colin; Paxton, Larry; Gjerloev, Jesper; Anderson, Brian;

Published by:       Published on:

YEAR: 2022     DOI:

Lobe Reconnection and Cusp-Aligned Auroral Arcs

Abstract Following the St. Patrick s Day (17 March) geomagnetic storm of 2013, the interplanetary magnetic field had near-zero clock angle for almost two days. Throughout this period multiple cusp-aligned auroral arcs formed in the polar regions; we present observations of, and provide a new explanation for, this poorly understood phenomenon. The arcs were observed by auroral imagers onboard satellites of the Defense Meteorological Satellite Program. Ionospheric flow measurements and observations of energetic particles from the same satellites show that the arcs were produced by inverted-V precipitation associated with upward field-aligned currents (FACs) at shears in the convection pattern. The large-scale convection pattern revealed by the Super Dual Auroral Radar Network and the corresponding FAC pattern observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment suggest that dual-lobe reconnection was ongoing to produce significant closure of the magnetosphere. However, we propose that once the magnetosphere became nearly closed complicated lobe reconnection geometries arose that produced interleaving of regions of open and closed magnetic flux and spatial and temporal structure in the convection pattern that evolved on timescales shorter than the orbital period of the DMSP spacecraft. This new model naturally explains many features of cusp-aligned arcs, including why they focus in from the nightside toward the cusp region.

Milan, S.; Bower, G.; Carter, J.; Paxton, L.; Anderson, B.; Hairston, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: https://doi.org/10.1029/2021JA030089

Impact of Soft Electron Precipitation on the Thermospheric Neutral Mass Density During Geomagnetic Storms: GITM Simulations

In this study, the impact of improving soft (0.1–1 keV) electron precipitation on the F-region neutral mass density has been evaluated using the Global Ionosphere Thermosphere Model (GITM). Two types of electron energy spectra having the same total energy flux and average energy but different spectral shapes have been used to specify the electron precipitation in GITM. One is the Maxwellian spectrum and the other is from an empirical model, Auroral Spectrum and High-Latitude Electric field variabilitY (ASHLEY), which provides stronger (up to 2–3 orders of magnitude) soft electron precipitations than the Maxwellian spectrum. Data-model comparisons indicate that the storm-time orbital averaged neutral density can be increased by 10\%–40\% and is more consistent with the observation if the non-Maxwellian ASHLEY spectrum is used. This study reveals the importance of accurate soft electron precipitation specifications in the whole auroral zone to improving the F-region neutral mass density estimations.

Zhu, Qingyu; Deng, Yue; Sheng, Cheng; Anderson, Philip; Bukowski, Aaron;

Published by: Geophysical Research Letters      Published on:

YEAR: 2022     DOI: 10.1029/2021GL097260

ASHLEY; GITM; neutral mass density; soft electron precipitation

2021

Field-Aligned Current During an Interval of BY-Dominated Interplanetary-Field; Modeled-to-Observed Comparisons

Carter, Jennifer; Samsonov, AA; Milan, Stephen; Branduardi-Raymont, Graziella; Ridley, Aaron; Paxton, Larry; Anderson, Brian; Waters, Colin; Edwards, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI:

Field-aligned current during an interval of $$\backslash$rm B\_ $\$Y$\$ $-dominated interplanetary-field; modeled-to-observed comparisons

Carter, Jennifer; Samsonov, Andrey; Milan, Stephen; Branduardi-Raymont, Graziella; Ridley, Aaron; Paxton, Larry; Anderson, Brian; Waters, Colin; Edwards, Thomas;

Published by: Earth and Space Science Open Archive ESSOAr      Published on:

YEAR: 2021     DOI:

Dual-lobe reconnection and cusp-aligned auroral arcs

Milan, Stephen; Bower, Gemma; Carter, Jennifer; Paxton, Larry; Anderson, Brian; Hairston, Marc;

Published by:       Published on:

YEAR: 2021     DOI:

Determination of Auroral Electrodynamic Parameters From AMPERE Field-Aligned Current Measurements

We calculate high latitude electrodynamic parameters using global maps of field-aligned currents from the Active Magnetosphere and Planetary Response Experiment (AMPERE). The model is based on previous studies that relate field-aligned currents to auroral Pedersen and Hall conductances measured by incoherent scatter radar. The field-aligned currents and conductances are used to solve for the electric potential at high latitudes from which electric fields are computed. The electric fields are then used with the conductances to calculate horizontal ionospheric currents. We validate the results by simulating the SuperMAG magnetic indices for 30 geomagnetically active days. The correlation coefficients between derived and actual magnetic indices were 0.68, 0.76, and 0.84 for the SMU, SML, and SME indices, respectively. We show examples of times when the simulations differ markedly from the measured indices and attribute them to either small-scale, substorm-related current structures or the effects of neutral winds. Overall, the performance of the model demonstrates that with few exceptions, auroral electrodynamic parameters can be accurately deduced from the global field-aligned current distribution provided by AMPERE.

Robinson, R.; Zanetti, Larry; Anderson, Brian; Vines, Sarah; Gjerloev, Jesper;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2020SW002677

space weather; auroral currents; auroral electrodynamics; conductivities; electric fields; field-aligned currents

2020

Bifurcated Region 2 Field-Aligned Currents Associated With Substorms

Sangha, H; Milan, SE; Carter, JA; Fogg, AR; Anderson, BJ; Korth, H; Paxton, LJ;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

Height-Integrated Ionospheric Conductances Parameterized By Interplanetary Magnetic Field and Substorm Phase

Carter, JA; Milan, SE; Paxton, LJ; Anderson, BJ; Gjerloev, J;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

Statistical relations between auroral electrical conductances and field-aligned currents at high latitudes

Robinson, RM; Kaeppler, Stephen; Zanetti, Larry; Anderson, Brian; Vines, Sarah; Korth, Haje; Fitzmaurice, Anna;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

Bifurcated region 2 field-aligned currents associated with substorms

Sangha, H; Milan, SE; Carter, JA; Fogg, AR; Anderson, BJ; Korth, H; Paxton, LJ;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

The evolution of long-duration cusp spot emission during lobe reconnection with respect to field-aligned currents

Carter, Jennifer; Milan, Stephen; Fogg, Alexandra; Sangha, Harneet; Lester, Mark; Paxton, Larry; Anderson, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

Dual-lobe reconnection and horse-collar auroras

Milan, Stephen; Carter, Jennifer; Bower, Gemma; Imber, Suzanne; Paxton, Larry; Anderson, Brian; Hairston, Marc; Hubert, Benoit;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

Initial observations by the GOLD mission

Given that previous measurements of ΔΣO/N 2 from low Earth orbit (LEO) have proven invaluable in advancing our understanding of the TI system (eg, TIMED/GUVI), GOLD data have

Eastes, RW; McClintock, WE; Burns, AG; Anderson, DN; Andersson, L; Aryal, S; Budzien, SA; Cai, X; Codrescu, MV; Correira, JT; , others;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: 10.1029/2020JA027823

2019

Global-scale Observations of the Equatorial Ionization Anomaly

Abstract The National Aeronautics and Space Administration Global-scale Observations of the Limb and Disk ultraviolet spectrograph has been imaging the equatorial ionization anomaly (EIA), regions of the ionosphere with enhanced electron density north and south of the magnetic equator, since October 2018. The initial 3 months of observations was during solar minimum conditions, and they included observations in December solstice of unanticipated variability and depleted regions. Depletions are seen on most nights, in contrast to expectations from previous space-based observations. The variety of scales and morphologies also pose challenges to understanding of the EIA. Abrupt changes in the EIA location, which could be related to in situ measurements of large-scale depletion regions, are observed on some nights. Such synoptic-scale disruptions have not been previously identified.

Eastes, R.; Solomon, S.; Daniell, R.; Anderson, D.; Burns, A.; England, S.; Martinis, C.; McClintock, W.;

Published by: Geophysical Research Letters      Published on:

YEAR: 2019     DOI: https://doi.org/10.1029/2019GL084199

Equatorial ionosphere; ionospheric irregularities; ionospheric dynamics; Ionospheric storms; forecasting; airglow and aurora

2018

Statistical Relations Between Field-Aligned Currents and Precipitating Electron Energy Flux

Measurements of field-aligned currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment are combined with measurements of far ultraviolet emissions from the Global Ultraviolet Imager on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite to examine the correlation between parallel currents and auroral electron energy flux. The energy flux is derived from the far ultraviolet emissions in the N2 Lyman-Birge-Hopfield bands. We find that energy flux correlates with field-aligned currents in both upward and downward current regions. The correlations vary with magnetic local time with the strongest dependences near magnetic midnight. The data are binned and averaged to construct a model of precipitating particle energy flux as a function of field-aligned current and magnetic local time. With Active Magnetosphere and Planetary Electrodynamics Response Experiment data as input, the model yields accurate estimates of the hemispheric power input from precipitating particles.

Robinson, R.; Zhang, Y.; Anderson, B.; Zanetti, L.; Korth, H.; Fitzmaurice, A.;

Published by: Geophysical Research Letters      Published on: 08/2018

YEAR: 2018     DOI: 10.1029/2018GL078718

Driving of strong nightside reconnection and geomagnetic activity by polar cap flows: application to CME shocks and possibly other situations

Lyons, LR; Gallardo-Lacourt, B; Zou, Y; Nishimura, Y; Anderson, P; , Angelopoulos; Donovan, EF; Ruohoniemi, JM; Mitchell, E; Paxton, LJ; , others;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on:

YEAR: 2018     DOI:

The association of high-latitude dayside aurora with NBZ field-aligned currents

Carter, JA; Milan, SE; Fogg, AR; Paxton, LJ; Anderson, BJ;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2018     DOI:

2017

The Global-Scale Observations of the Limb and Disk (GOLD) Mission

The Earth\textquoterights thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth\textquoterights atmosphere. Previous missions have successfully determined how the \textquotedblleftclimate\textquotedblright of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the \textquotedblleftweather\textquotedblright of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth\textquoterights atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth\textquoterights emissions from 132 to 162 nm. These measurements will be used image two critical variables\textemdashthermospheric temperature and composition, near 160 km\textemdashon the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.

Eastes, R.; McClintock, W.; Burns, A.; Anderson, D.; Andersson, L.; Codrescu, M.; Correira, J.; Daniell, R.; England, S.; Evans, J.; Harvey, J.; Krywonos, A.; Lumpe, J.; Richmond, A.; Rusch, D.; Siegmund, O.; Solomon, S.; Strickland, D.; Woods, T.; Aksnes, A.; Budzien, S.; Dymond, K.; Eparvier, F.; Martinis, C.; Oberheide, J.;

Published by: Space Science Reviews      Published on: 10/2017

YEAR: 2017     DOI: 10.1007/s11214-017-0392-2

Driving of Dramatic Geomagnetic Activity by Enhancement of Meso-Scale Polar-cap Flows

Lyons, Larry; Gallardo-Lacourt, Bea; Zou, Ying; Nishimura, Yukitoshi; Anderson, Phillip; Angelopoulos, VASSILIS; Ruohoniemi, Michael; Mitchell, Elizabeth; Paxton, Larry; Nishitani, Nozomu;

Published by:       Published on:

YEAR: 2017     DOI:

2016

Average field-aligned current configuration parameterised by solar wind conditions

We present the first large-scale comparison of the spatial distribution of field-aligned currents as measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment, with the location and brightness of the average auroral oval, determined from the Imager for Magnetopause-to-Aurora Global Exploration far ultraviolet instrument. These distributions are compared under the same interplanetary magnetic field magnitude and clock angle conditions. The field-aligned currents and auroral oval drop to lower latitudes, as the interplanetary magnetic field becomes both increasingly stronger in magnitude and increasingly southward. We find that the region 2 currents are more closely aligned with the distribution of auroral UV emission, whether that be in the discrete auroral zone about dusk or in the postmidnight diffuse aurora sector. The lack of coincidence between the region 1 field-aligned currents with the auroral oval in the dusk sector is contrary to expectation.

Carter, J.; Milan, S.; Coxon, J.; Walach, M.-T.; Anderson, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015JA021567

auroral oval; field-aligned currents

Nightside storm-time Birkeland currents: quasi-steady state, onsets, and dual R1/2 sense pairs

Anderson, BJ; Korth, H; Paxton, LJ; Olson, C; Waters, CL; Barnes, RJ; Gjerloev, JW;

Published by:       Published on:

YEAR: 2016     DOI:

Average field-aligned current configuration parameterized by solar wind conditions

Carter, JA; Milan, Stephen; Coxon, JC; Walach, M-T; Anderson, BJ;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2016     DOI:

Nightside storm-time Birkeland currents: quasi-steady state, onsets, and dual R1/2 sense pairs

Korth, Haje; Anderson, Brian; Paxton, Larry; Olson, Cameron; Waters, Colin; Barnes, Robin; Gjerloev, Jesper;

Published by:       Published on:

YEAR: 2016     DOI:

Ionospheric data assimilation and forecasting during storms

Chartier, Alex; Matsuo, Tomoko; Anderson, Jeffrey; Collins, Nancy; Hoar, Timothy; Lu, Gang; Mitchell, Cathryn; Coster, Anthea; Paxton, Larry; Bust, Gary;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2016     DOI:

2015

Towards a National Space Weather Predictive Capability

Fox, Nicola; Ryschkewitsch, Michael; Merkin, Viacheslav; Stephens, Grant; Gjerloev, Jesper; Barnes, Robin; Anderson, Brian; Paxton, Larry; Ukhorskiy, Aleksandr; Kelly, Michael; , others;

Published by:       Published on:

YEAR: 2015     DOI:

2014

Comparative studies of theoretical models in the equatorial ionosphere

Fang, Tzu-Wei; Anderson, David; Fuller-Rowell, Tim; Akmaev, Rashid; Codrescu, Mihail; Millward, George; Sojka, Jan; Scherliess, Ludger; Eccles, Vince; Retterer, John; , others;

Published by: Modeling the ionosphere—thermosphere system      Published on:

YEAR: 2014     DOI:

Towards a National Space Weather Predictive Capability

Lindstrom, Kurt; Fox, Nicola; Ryschkewitsch, Michael; Anderson, Brian; Gjerloev, Jesper; Merkin, Viacheslav; Kelly, Michael; Miller, Ethan; Sitnov, Mikhail; Ukhorskiy, Aleksandr; , others;

Published by:       Published on:

YEAR: 2014     DOI:

Statistical relationship between large-scale upward field-aligned currents and electron precipitation

Simultaneous observations of Birkeland currents by the constellation of Iridium satellites and N2 Lyman\textendashBirge\textendashHopfield (LBH) auroral emissions measured by the Global Ultraviolet Imager (GUVI) onboard the Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) satellite are used to establish relationships between large-scale upward field-aligned currents and electron precipitation during stable current configurations. The electron precipitation was inferred from GUVI data using a statistical relationship between LBH intensity and electron energy flux. LBH emissions with \>5\% contribution from protons, identified by Lyman-alpha intensity, were excluded from the analysis. The Birkeland currents were derived with a spatial resolution of 3\textdegree in latitude and 2 h in local time. For southward interplanetary magnetic field (IMF), the electron precipitation occurred primarily within and near large-scale upward currents. The correspondence was less evident for northward IMF, presumably because the spatial variability is large compared to the areas of interest so that the number of events identified is smaller and the derived statistical distributions are less reliable. At dusk, the correlation between upward current and precipitation was especially high, where a larger fraction of the electron precipitation is accelerated downward by a field-aligned potential difference. Unaccelerated electron precipitation dominated in the morning sector, presumably induced by scattering of eastward-drifting energetic electrons into the loss cone through interaction with whistler-mode waves (diffuse precipitation) rather than by field-aligned acceleration. In the upward Region 1 on the dayside, where electron precipitation is almost exclusively due to field-aligned acceleration, a quadratic relationship between current density and electron energy flux was observed, implying a linear current\textendashvoltage relationship in this region. Current density and electron energy flux in the regions of the large-scale upward currents from pre-midnight through dawn to noon are essentially uncorrelated consistent with a dominance of diffuse electron precipitation to the incident energy flux.

Korth, Haje; Zhang, Yongliang; Anderson, Brian; Sotirelis, Thomas; Waters, Colin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2014     DOI: 10.1002/2014JA019961

Birkeland Currents; Auroral Emissions; electron precipitation; Current-Precipitation Relationship; Current-Voltage Relationship

Towards a National Space Weather Predictive Capability

Fox, NJ; Lindstrom, KL; Ryschkewitsch, MG; Anderson, BJ; Gjerloev, JW; Merkin, VG; Kelly, MA; Miller, ES; Sitnov, MI; Ukhorskiy, AY; , others;

Published by:       Published on:

YEAR: 2014     DOI:

2013

The Science of the Global-scale measurements of the Limb and Disk (GOLD) Mission

Burns, AG; Eastes, R; McClintock, WE; Solomon, SC; Anderson, DN; Andersson, L; Codrescu, M; Daniell, RE; Harvey, J; Krywonos, A; , others;

Published by:       Published on:

YEAR: 2013     DOI:

2012

Forcing the TIEGCM model with Birkeland currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment

Marsal, S.; Richmond, A.; Maute, A.; Anderson, B.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2012

YEAR: 2012     DOI: 10.1029/2011JA017416

Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering

This paper presents our effort to assimilate FORMOSAT-3/COSMIC (F3/C) GPS Occultation Experiment (GOX) observations into the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) by means of ensemble Kalman filtering (EnKF). The F3/C electron density profiles (EDPs) uniformly distributed around the globe which provide an excellent opportunity to monitor the ionospheric electron density structure. The NCAR TIE-GCM simulates the Earth\textquoterights thermosphere and ionosphere by using self-consistent solutions for the coupled nonlinear equations of hydrodynamics, neutral and ion chemistry, and electrodynamics. The F3/C EDP are combined with the TIE-GCM simulations by EnKF algorithms implemented in the NCAR Data Assimilation Research Testbed (DART) open-source community facility to compute the expected value of electron density, which is \textquoteleftthe best\textquoteright estimate of the current ionospheric state. Assimilation analyses obtained with real F3/C electron density profiles are compared with independent ground-based observations as well as the F3/C profiles themselves. The comparison shows the improvement of the primary ionospheric parameters, such as NmF2 and hmF2. Nevertheless, some unrealistic signatures appearing in the results and high rejection rates of observations due to the applied outlier threshold and quality control are found in the assimilation experiments. This paper further discusses the limitations of the model and the impact of ensemble member creation approaches on the assimilation results, and proposes possible methods to avoid these problems for future work.

Lee, I.; Matsuo, T.; Richmond, A.; Liu, J; Wang, W.; Lin, C.; Anderson, J.; Chen, M.;

Published by: Journal of Geophysical Research      Published on: 10/2012

YEAR: 2012     DOI: 10.1029/2012JA017700

data assimilation; ensemble Kalman filter; FORMOSAT-3/COSMIC; Ionosphere

Global-scale Observations of the Limb and Disk (GOLD)

Eastes, R; McClintock, W; Aksnes, A; Anderson, D; Andersson, L; Burns, A; Budzien, S; Codrescu, M; Daniell, R; Dymond, K; , others;

Published by: AMC      Published on:

YEAR: 2012     DOI:

2011

A study of the strong linear relationship between the equatorial ionization anomaly and the prereversal E \texttimes B drift velocity at solar minimum

McDonald, Sarah; Coker, Clayton; Dymond, Kenneth; Anderson, David; Araujo-Pradere, Eduardo;

Published by: Radio Science      Published on: Jan-12-2011

YEAR: 2011     DOI: 10.1029/2011RS004702

The Storm Time Energy and Dynamics Explorers

Swenson, C; Fish, CS; Crowley, G; Earle, GD; Anderson, BJ; Dyrud, LP; Carlson, HC; Erickson, PJ; Fejer, BG; Mertens, CJ; , others;

Published by:       Published on:

YEAR: 2011     DOI:

A study of the strong linear relationship between the equatorial ionization anomaly and the prereversal EXB drift velocity at solar minimum

It is known that there exists a linear relationship between the maximum velocity of the prereversal enhancement (PRE) of the EXB drift and the strength of the equatorial ionization

McDonald, Sarah; Coker, Clayton; Dymond, Kenneth; Anderson, David; Araujo-Pradere, Eduardo;

Published by: Radio Science      Published on:

YEAR: 2011     DOI: 10.1029/2011RS004702

2010

Statistical analysis of the dependence of large-scale Birkeland currents on solar wind parameters

Korth, H.; Anderson, B.; Waters, C.;

Published by: Annales Geophysicae      Published on: Jan-01-2010

YEAR: 2010     DOI: 10.5194/angeo-28-515-2010

Equatorial-PRIMO (Problems Related to Ionospheric Models and Observations)

Fang, T; Anderson, DN; Fuller-Rowell, TJ; Akmaev, RA; Codrescu, M; Millward, GH; Sojka, JJ; Scherliess, L; Eccles, JV; Retterer, JM; , others;

Published by:       Published on:

YEAR: 2010     DOI:

2009

Observations of the Ionosphere Using the Tiny Ionospheric Photometer.

Coker, Clayton; Dymond, Kenneth; Budzien, Scott; Chua, Damien; Liu, Jann-Yenq; Anderson, David; Basu, Sunanda; Pedersen, Todd;

Published by: Terrestrial, Atmospheric \& Oceanic Sciences      Published on:

YEAR: 2009     DOI:

2008

High-latitude ionosphere convection and Birkeland current response for the 15 May 2005 magnetic storm recovery phase

Eriksson, S.; Hairston, M.; Rich, F.; Korth, H.; Zhang, Y.; Anderson, B.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2008

YEAR: 2008     DOI: 10.1029/2008JA013139

Global-scale Observations of the Limb and Disk: a key mission for understanding thermosphere-ionosphere forcing

Eastes, R; Burns, AG; McClintock, W; Aksnes, A; Anderson, D; Andersson, L; Budzien, S; Codrescu, M; Daniell, R; England, S; , others;

Published by:       Published on:

YEAR: 2008     DOI:

Low Latitude Ionosphere Measurements by the Global-scale Observations of the Limb and Disk (GOLD) Mission

Eastes, RW; Anderson, DN; McClintock, WE; Aksnes, A; Andersson, L; Burns, AG; Budzien, SA; Codrescu, MV; Daniell, RE; Dymond, KF; , others;

Published by:       Published on:

YEAR: 2008     DOI:

Impact of terrestrial weather on the upper atmosphere

Fuller-Rowell, TJ; Akmaev, RA; Wu, F; Anghel, A; Maruyama, N; Anderson, DN; Codrescu, MV; Iredell, M; Moorthi, S; Juang, H-M; , others;

Published by: Geophysical Research Letters      Published on:

YEAR: 2008     DOI:

2007

Global-scale Observations of the Limb and Disk (GOLD)-New Observing Capabilities for Space Weather Specification and Forecasting

Eastes, R; Codrescu, M; McClintock, W; Aksnes, A; Anderson, D; Andersson, L; Burns, A; Budzien, S; Daniell, R; Dymond, K; , others;

Published by:       Published on:

YEAR: 2007     DOI:

Global Observations of the Limb and Disk (GOLD): Temperature Measurements

Rusch, D; Aksnes, A; Budzien, S; Eastes, R; Anderson, D; Andersson, L; Burns, A; Codrescu, M; Daniell, R; Dymond, K; , others;

Published by:       Published on:

YEAR: 2007     DOI:

Modeling storm-time electrodynamics of the low-latitude ionosphere–thermosphere system: Can long lasting disturbance electric fields be accounted for?

Storm-time ionospheric disturbance electric fields are studied for two large geomagnetic storms, March 31, 2001 and April 17–18, 2002, by comparing low-latitude observations of ionospheric plasma drifts with results from numerical simulations based on a combination of first-principles models. The simulation machinery combines the Rice convection model (RCM), used to calculate inner magnetospheric electric fields, and the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model, driven, in part, by RCM-computed electric fields. Comparison of model results with measured or estimated low-latitude vertical drift velocities (zonal electric fields) shows that the coupled model is capable of reproducing measurements under a variety of conditions. In particular, our model results suggest, from theoretical grounds, a possibility of long-lasting penetration of magnetospheric electric fields to low latitudes during prolonged periods of enhanced convection associated with southward-directed interplanetary magnetic field, although the model probably overestimates the magnitude and duration of such penetration during extremely disturbed conditions. During periods of moderate disturbance, we found surprisingly good overall agreement between model predictions and data, with penetration electric fields accounting for early main phase changes and oscillations in low-latitude vertical drift, while the disturbance dynamo mechanism becomes increasingly important later in the modeled events. Discrepancies between the model results and the observations indicate some of the difficulties in validating these combined numerical models, and the limitations of the available experimental data.

Maruyama, Naomi; Sazykin, Stanislav; Spiro, Robert; Anderson, David; Anghel, Adela; Wolf, Richard; Toffoletto, Frank; Fuller-Rowell, Timothy; Codrescu, Mihail; Richmond, Arthur; Millward, George;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on:

YEAR: 2007     DOI: https://doi.org/10.1016/j.jastp.2006.08.020

Magnetosphere–ionosphere–thermosphere coupling; Ionospheric electrodynamics; low-latitude ionosphere; Penetration electric fields; disturbance dynamo electric fields; Numerical modeling

2006

PHYSICAL INTERPRETATION OF THE THERMOSPHERE-IONOSPHERE RESPONSE TO THE APRIL 2002 MAGNETIC STORM

Fedrizzi, M; Fuller-Rowell, TJ; Codrescu, M; Araujo-Pradere, EA; Minter, CF; Khalsa, H; Maruyama, N; Anderson, D; Anghel, A;

Published by:       Published on:

YEAR: 2006     DOI:



  1      2