Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2021

Proton Aurora and Optical Emissions in the Subauroral Region

Optical structures located equatorward of the main auroral oval often exhibit different morphologies and dynamics than structures at higher latitudes. In some cases, questions arise regarding the formation mechanisms of these photon-emitting phenomena. New developments in space and ground-based instruments have enabled us to acquire a clearer view of the processes playing a role in the formation of subauroral structures. In addition, the discovery of new optical structures helps us improve our understanding of the latitudinal and altitudinal coupling that takes place in the subauroral region. However, several questions remain unanswered, requiring the development of new instruments and analysis techniques. We discuss optical phenomena in the subauroral region, summarize observational results, present conclusions about their origin, and pose a number of open questions that warrant further investigation of proton aurora, detached subauroral arcs and spots, stable auroral red (SAR) arcs, and STEVE (Strong Thermal Emission Velocity Enhancement).

Gallardo-Lacourt, B.; Frey, H.; Martinis, C.;

Published by: Space Science Reviews      Published on: jan

YEAR: 2021     DOI: 10.1007/s11214-020-00776-6

Optical structures; Subauroral region

Longitudinal Variation of Postsunset Plasma Depletions From the Global-Scale Observations of the Limb and Disk (GOLD) Mission

The Global-scale Observations of the Limb and Disk (GOLD) mission, launched in 2018, aims to investigate the low latitude ionosphere from a geostationary orbit at 47.5°W. It uses two identical spectrometers measuring the wavelength range from 134.0 to 163.0 nm. The configuration of the Earth s magnetic field shows that the largest offset between geographic and geomagnetic equators occurs in the longitude sectors sampled by GOLD. In an attempt to investigate the longitude dependence of the occurrence rate and time of onset of plasma bubbles, or plasma depletions, GOLD data were separated in three sectors: 65°-55°W, 50°-40°W, and 10°W–0°. Observations of the nighttime emissions in 135.6 nm on November 2018 and March 2019 show plasma depletions occurring very frequently at these longitudes. The growth rate of the Rayleigh-Taylor instability was computed at these longitudes under similar low solar activity conditions, assuming an empirical model of upward plasma drifts. The time and value of the maximum growth rates obtained cannot always explain the observations. On average, the observed occurrence rate of plasma depletions is high, with a maximum of 73\% (observed during November 2018 at ∼45°W). Most of the depletions observed in November at 45°W and 60°W occur within 1 h after sunset. When compared with the November 2018 observations, depletions in March 2019 occur at later times.

Martinis, C.; Daniell, R.; Eastes, R.; Norrell, J.; Smith, J.; Klenzing, J.; Solomon, S.; Burns, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028510

F region; longitude variability; plasma bubbles; Plasma depletions; upward drifts

2020

First zonal drift velocity measurement of Equatorial Plasma Bubbles (EPBs) from a geostationary orbit using GOLD data

Karan, Deepak; Daniell, Robert; England, Scott; Martinis, Carlos; Eastes, Richard; Burns, Alan; McClintock, William;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

Global-scale observations and modeling of far-ultraviolet airglow during twilight

The NASA Global‐scale Observations of the Limb and Disk ultraviolet imaging spectrograph performs observations of upper atmosphere airglow from the sunlit disk and limb of the Earth

Solomon, Stanley; Andersson, Laila; Burns, Alan; Eastes, Richard; Martinis, Carlos; McClintock, William; Richmond, Arthur;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: 10.1029/2019JA027645

2019

Global-scale Observations of the Equatorial Ionization Anomaly

Abstract The National Aeronautics and Space Administration Global-scale Observations of the Limb and Disk ultraviolet spectrograph has been imaging the equatorial ionization anomaly (EIA), regions of the ionosphere with enhanced electron density north and south of the magnetic equator, since October 2018. The initial 3 months of observations was during solar minimum conditions, and they included observations in December solstice of unanticipated variability and depleted regions. Depletions are seen on most nights, in contrast to expectations from previous space-based observations. The variety of scales and morphologies also pose challenges to understanding of the EIA. Abrupt changes in the EIA location, which could be related to in situ measurements of large-scale depletion regions, are observed on some nights. Such synoptic-scale disruptions have not been previously identified.

Eastes, R.; Solomon, S.; Daniell, R.; Anderson, D.; Burns, A.; England, S.; Martinis, C.; McClintock, W.;

Published by: Geophysical Research Letters      Published on:

YEAR: 2019     DOI: https://doi.org/10.1029/2019GL084199

Equatorial ionosphere; ionospheric irregularities; ionospheric dynamics; Ionospheric storms; forecasting; airglow and aurora

2017

The Global-Scale Observations of the Limb and Disk (GOLD) Mission

The Earth\textquoterights thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth\textquoterights atmosphere. Previous missions have successfully determined how the \textquotedblleftclimate\textquotedblright of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the \textquotedblleftweather\textquotedblright of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth\textquoterights atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth\textquoterights emissions from 132 to 162 nm. These measurements will be used image two critical variables\textemdashthermospheric temperature and composition, near 160 km\textemdashon the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.

Eastes, R.; McClintock, W.; Burns, A.; Anderson, D.; Andersson, L.; Codrescu, M.; Correira, J.; Daniell, R.; England, S.; Evans, J.; Harvey, J.; Krywonos, A.; Lumpe, J.; Richmond, A.; Rusch, D.; Siegmund, O.; Solomon, S.; Strickland, D.; Woods, T.; Aksnes, A.; Budzien, S.; Dymond, K.; Eparvier, F.; Martinis, C.; Oberheide, J.;

Published by: Space Science Reviews      Published on: 10/2017

YEAR: 2017     DOI: 10.1007/s11214-017-0392-2

2016

Reply to comment by Kil et al. on “The night when the auroral and equatorial ionospheres converged”

Martinis, Carlos; Baumgardner, Jeffrey; Mendillo, Michael; Wroten, Joei; Coster, Anthea; Paxton, Larry;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2016     DOI:

2015

The night when the auroral and equatorial ionospheres converged

Martinis, C; Baumgardner, J; Mendillo, M; Wroten, J; Coster, A; Paxton, L;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2015     DOI:



  1