Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 40 entries in the Bibliography.


Showing entries from 1 through 40


2022

Exospheric Temperature Measured by NASA-GOLD Under Low Solar Activity: Comparison With Other Data Sets

Exospheric temperature is one of the key parameters in constructing thermospheric models and has been extensively studied with in situ observations and remote sensing. The Global-scale Observations of the Limb and Disk (GOLD) at a geosynchronous vantage point provides dayglow limb images for two longitude sectors, from which we can estimate the terrestrial exospheric temperature since 2018. In this paper, we investigate climatological behavior of the exospheric temperature measured by GOLD. The temperature has positive correlations with solar and geomagnetic activity and exhibits a morning-afternoon asymmetry, both of which agree with previous studies. We have found that the arithmetic sum of F10.7 (solar) and Ap (geomagnetic) indices is highly correlated with the exospheric temperature, explaining ∼64\% of the day-to-day variability. Furthermore, the exospheric temperature has good correlation with thermospheric parameters (e.g., neutral temperature, O2 density, and NO emission index) sampled at various heights above ∼130 km, in spite of the well-known thermal gradient below ∼200 km. However, thermospheric temperature at altitudes around 100 km is not well correlated with the GOLD exospheric temperature. The result implies that effects other than thermospheric heating by solar Extreme Ultraviolet and geomagnetic activity take control below a threshold altitude that exists between ∼100 and ∼130 km.

Park, Jaeheung; Evans, Joseph; Eastes, Richard; Lumpe, Jerry; van den Ijssel, Jose; Englert, Christoph; Stevens, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA030041

Aura/MLS; exospheric temperature; GOLD; ICON; swarm; TIMED/SABER

2021

Deducing Non-Migrating Diurnal Tides in the Middle Thermosphere With GOLD Observations of the Earth's far Ultraviolet Dayglow From Geostationary Orbit

The global-scale observations of the limb and disk (GOLD) Mission images middle thermosphere temperature and the vertical column density ratio of oxygen to molecular nitrogen (O/N2) using its far ultraviolet imaging spectrographs in geostationary orbit. Since GOLD only measures these quantities during daylight, and only over the ∼140° of longitude visible from geostationary orbit, previously developed tidal analysis techniques cannot be applied to the GOLD data set. This paper presents a novel approach that deduces two specified non-migrating diurnal tides using simultaneous measurements of temperature and O/N2. DE3 (diurnal eastward propagating wave 3) and DE2 (diurnal eastward propagating wave 2) during October 2018 and January 2020 are the focus of this paper. Sensitivity analyses using TIE-GCM simulations reveal that our approach reliably retrieves the true phases, whereas a combination of residual contributions from secondary tides, the restriction in longitude, and random uncertainty can lead to ∼50\% error in the retrieved amplitudes. Application of our approach to GOLD data during these time periods provides the first observations of non-migrating diurnal tides in measurements taken from geostationary orbit. We identify discrepancies between GOLD observations and TIE-GCM modeling. Retrieved tidal amplitudes from GOLD observations exceed their respective TIE-GCM amplitudes by a factor of two in some cases.

Krier, Christopher; England, Scott; Greer, Katelynn; Evans, Scott; Burns, Alan; Eastes, Richard;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029563

airglow; composition; temperature; thermosphere; tides

Thermospheric Composition and Solar EUV Flux From the Global-Scale Observations of the Limb and Disk (GOLD) Mission

Observations of far-ultraviolet (FUV) dayglow by the Global-scale Observations of Limb and Disk (GOLD) mission provide a new opportunity to monitor relative composition changes in the upper atmosphere as well as solar extreme ultraviolet (EUV) variability. Relative composition changes are quantified by ΣO/N2, the column density ratio of atomic oxygen to molecular nitrogen, while QEUV provides a measure of the solar EUV energy flux from 1 to 45 nm into the upper atmosphere. This spectral range provides the ionizing radiation which ultimately results in FUV airglow emission produced by photodissociation and photoelectron impact. The quantities ΣO/N2 and QEUV are derived from GOLD FUV observations through lookup tables that are constructed using a first-principles photoelectron transport model. The two FUV emissions used are O I 135.6 nm and the N2 Lyman-Birge-Hopfield (LBH) bands. We present an overview of the theoretical basis for the algorithms and practical considerations for application to GOLD data. The effects of uncertainties in electron impact cross sections, off-nadir viewing, and instrument artifacts are reviewed. We also discuss GOLD Level 1C DAY, Level 2 data products ON2 and QEUV, and present representative samples of each.

Correira, J.; Evans, J.; Lumpe, J.; Krywonos, A.; Daniell, R.; Veibell, V.; McClintock, W.; Eastes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029517

GOLD; neutral composition; ON2; QEUV; radiative recombination; thermosphere

First Comparison of Traveling Atmospheric Disturbances Observed in the Middle Thermosphere by Global-Scale Observations of the Limb and Disk to Traveling Ionospheric Disturbances Seen in Ground-Based Total Electron Content Observations

Traveling ionospheric disturbances (TIDs) and their neutral counterparts known as traveling atmospheric disturbances (TADs) are believed to play a role in communicating inputs to other locations in the fluid. While these two phenomena are believed to be connected, they may not have a one-to-one correspondence as the geomagnetic field influences the TID but has no direct impact on the TAD. The relative amplitudes of the perturbations seen in the ionosphere and atmosphere have been observed but rarely together. This study reports results from a 3-day campaign to observe TIDs and TADs simultaneously over a broad latitudinal region over the eastern United States using a combination of Global-scale Observations of the Limb and Disk (GOLD) and a distributed network of ground-based Global Navigation Satellite System (GNSS) receivers. These results demonstrate that GOLD and the ground-based total electron content (TEC) observations can see the atmospheric and ionospheric portions of a large-scale traveling disturbance. The phase difference in the perturbations to the GOLD airglow brightness, O/N2 and thermospheric disk temperature are consistent with an atmospheric gravity wave moving through this region. The ionospheric signatures move at the same rate as those in the atmosphere, but their amplitudes do not have a simple correspondence to the amplitude of the signal seen in the atmosphere. This campaign demonstrates a proof-of-concept that this combination of observations is able to provide information on TIDs and TADs, including quantifying their impact on the temperature and chemical composition of the upper atmosphere.

England, Scott; Greer, Katelynn; Zhang, Shun-Rong; Evans, Scott; Solomon, Stanley; Eastes, Richard; McClintock, William; Burns, Alan;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029248

Ionosphere; thermosphere; airglow; atmospheric waves

Estimating Precipitating Energy Flux, Average Energy, and Hall Auroral Conductance From THEMIS All-Sky-Imagers With Focus on Mesoscales

Recent attention has been given to mesoscale phenomena across geospace (∼10 s km to 500 km in the ionosphere or ∼0.5 RE to several RE in the magnetosphere), as their contributions to the system global response are important yet remain uncharacterized mostly due to limitations in data resolution and coverage as well as in computational power. As data and models improve, it becomes increasingly valuable to advance understanding of the role of mesoscale phenomena contributions—specifically, in magnetosphere-ionosphere coupling. This paper describes a new method that utilizes the 2D array of Time History of Events and Macroscale Interactions during Substorms (THEMIS) white-light all-sky-imagers (ASI), in conjunction with meridian scanning photometers, to estimate the auroral scale sizes of intense precipitating energy fluxes and the associated Hall conductances. As an example of the technique, we investigated the role of precipitated energy flux and average energy on mesoscales as contrasted to large-scales for two back-to-back substorms, finding that mesoscale aurora contributes up to ∼80\% (∼60\%) of the total energy flux immediately after onset during the early expansion phase of the first (second) substorm, and continues to contribute ∼30–55\% throughout the remainder of the substorm. The average energy estimated from the ASI mosaic field of view also peaked during the initial expansion phase. Using the measured energy flux and tables produced from the Boltzmann Three Constituent (B3C) auroral transport code (Strickland et al., 1976; 1993), we also estimated the 2D Hall conductance and compared it to Poker Flat Incoherent Scatter Radar conductance values, finding good agreement for both discrete and diffuse aurora.

Gabrielse, Christine; Nishimura, Toshi; Chen, Margaret; Hecht, James; Kaeppler, Stephen; Gillies, Megan; Reimer, Ashton; Lyons, Larry; Deng, Yue; Donovan, Eric; Evans, Scott;

Published by: Frontiers in Physics      Published on:

YEAR: 2021     DOI:

2020

Neutral exospheric temperatures from the GOLD mission

Evans, JS; Lumpe, JD; Correira, J; , Veibell; Kyrwonos, A; McClintock, WE; Solomon, SC; Eastes, RW;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

A new data set of thermospheric molecular oxygen from the Global-scale Observations of the Limb and Disk (GOLD) mission

The Global-scale Observations of the Limb and Disk (GOLD) instrument was launched on 25 January 2018 onboard the SES-14 commercial communications satellite and began nominal science operations in October 2018. Operating from geostationary orbit at 47.5°W longitude, GOLD images the Earth s thermosphere and ionosphere in the far-ultraviolet (132–162 nm), measuring critical geophysical parameters by continuously scanning the Earth s disk and limb 18 hours per day. GOLD also performs stellar occultation measurements using bright type O and B stars.

Lumpe, JD; McClintock, WE; Evans, JS; Correira, J; , Veibell; Beland, S; Eastes, R;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: 10.1029/2020JA027812

2018

Global-scale Observations of the Limb and Disk (GOLD): science implementation

McClintock, William; Eastes, Richard; Andersson, Laila; Burns, Alan; Codrescu, Mihail; Daniell, Robert; England, Scott; Evans, Scott; Krywonos, Andrey; Lumpe, Jerry; , others;

Published by:       Published on:

YEAR: 2018     DOI:

2017

The Global-Scale Observations of the Limb and Disk (GOLD) Mission

The Earth\textquoterights thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth\textquoterights atmosphere. Previous missions have successfully determined how the \textquotedblleftclimate\textquotedblright of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the \textquotedblleftweather\textquotedblright of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth\textquoterights atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth\textquoterights emissions from 132 to 162 nm. These measurements will be used image two critical variables\textemdashthermospheric temperature and composition, near 160 km\textemdashon the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.

Eastes, R.; McClintock, W.; Burns, A.; Anderson, D.; Andersson, L.; Codrescu, M.; Correira, J.; Daniell, R.; England, S.; Evans, J.; Harvey, J.; Krywonos, A.; Lumpe, J.; Richmond, A.; Rusch, D.; Siegmund, O.; Solomon, S.; Strickland, D.; Woods, T.; Aksnes, A.; Budzien, S.; Dymond, K.; Eparvier, F.; Martinis, C.; Oberheide, J.;

Published by: Space Science Reviews      Published on: 10/2017

YEAR: 2017     DOI: 10.1007/s11214-017-0392-2

2015

A new technique for remote sensing of O 2 density from 140 to 180 km

Observations of molecular oxygen are difficult to make in the Earth\textquoterights atmosphere between 140 and 200 km altitude. Perhaps the most accurate measurements to date have been obtained from satellite instruments that measure solar occultations of the limb. These do provide height-resolved O2 density measurements, but the nature of this technique is such that the temporal/spatial distribution of the measurements is uneven. Here a new space-based technique is described that utilizes two bright dayglow emissions, the (0,0) transition of the O2 atmospheric band and the O I (630 nm), to derive the height-resolved O2 density from 140 to 180 km. Data from the Remote Atmospheric and Ionospheric Detection System, which was placed on the International Space Station in late 2009, are used to illustrate this technique. The O2 density results for periods in May 2010 that were geomagnetically quiet and disturbed are compared to model predictions.

Hecht, James; Christensen, Andrew; Yee, Jeng-Hwa; Crowley, Geoff; Bishop, Rebeeca; Budzien, Scott; Stephan, Andrew; Evans, Scott;

Published by: Geophysical Research Letters      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014GL062355

composition; technique; thermosphere

A new technique for remote sensing of O2 density from 140 to 180 km

Hecht, James; Christensen, Andrew; Yee, Jeng-Hwa; Crowley, Geoff; Bishop, Rebeeca; Budzien, Scott; Stephan, Andrew; Evans, Scott;

Published by: Geophysical Research Letters      Published on:

YEAR: 2015     DOI:

2014

Solar filament impact on 21 January 2005: Geospace consequences

On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the massive solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection decelerated moving toward 1 AU creating the appearance of an eroded flux rope (see companion paper by Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact, the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief superfountain in the equatorial ionosphere\textemdashan unusual occurrence for a moderate storm. Within 1 h after impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities reached tens per cubic centimeter along the flanks\textemdashhigh enough to inflate the magnetotail in the simulation under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching was provided by a corresponding expansion and intensification of both the auroral oval and ring current precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in the cusps, a by-product of the CDPS formation process, contributed to an equatorward neutral wind surge that reached low latitudes within 1\textendash2 h and intensified the equatorial ionization anomaly. Understanding the geospace consequences of extremes in density and pressure is important because some of the largest and most damaging space weather events ever observed contained similar intervals of dense solar material.

Kozyra, J.; Liemohn, M.; Cattell, C.; De Zeeuw, D.; Escoubet, C.; Evans, D.; Fang, X.; Fok, M.-C.; Frey, H.; Gonzalez, W.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W.; Mende, S.; Paxton, L.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M.; Tsurutani, B.; Verkhoglyadova, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2013JA019748

cold dense plasma sheet; Equatorial anomaly; magnetotail; precipitation; prompt penetration electric field; solar filament

2013

The GOLD Science Data Center-Algorithm Heritage, Data Product Descriptions and User Services

Lumpe, JD; Foroosh, H; Eastes, R; Krywonos, A; Evans, JS; Burns, AG; Strickland, DJ; Daniell, RE; England, S; Solomon, SC; , others;

Published by:       Published on:

YEAR: 2013     DOI:

2012

Comment on \textquotedblleftLong-term variation in the thermosphere: TIMED/GUVI observations\textquotedblright by Y. Zhang and L. J. Paxton

Strickland, D.; Evans, J.; Correira, J.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2012

YEAR: 2012     DOI: 10.1029/2011JA017350

The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 year perspective

The Wind Imaging Interferometer (WINDII) was launched on the NASA\textquoterights Upper Atmosphere Research Satellite on 12 September 1991 and operated until 2003. Its role in the mission was to measure vector winds in the Earth\textquoterights atmosphere from 80 to 110 km, but its measurements extended to nearly 300 km. The approach employed was to measure Doppler shifts from a suite of visible region airglow lines emitted over this altitude range. These included atomic oxygen O(1S) and O(1D) lines, as well as lines in the OH Meinel (8,3) and O2 Atmospheric (0,0) bands. The instrument employed was a Doppler Michelson Interferometer that measured the Doppler shift as a phase shift of the cosinusoidal interferogram generated by single airglow lines. An extensive validation program was conducted after launch to confirm the accuracy of the measurements. The dominant wind field, the first one observed by WINDII, was that of the migrating diurnal tide at the equator. The overall most notable WINDII contribution followed from this: determining the influence of dynamics on the transport of atmospheric species. Currently, nonmigrating tides are being studied in the thermosphere at both equatorial and high latitudes. Other aspects investigated included solar and geomagnetic influences, temperatures from atmospheric-scale heights, nitric oxide concentrations, and the occurrence of polar mesospheric clouds. The results of these observations are reviewed from a perspective of 20 years. A future perspective is then projected, involving more recently developed concepts. It is intended that this description will be helpful for those planning future missions.

Shepherd, G.; Thuillier, G.; Cho, Y.-M.; Duboin, M.-L.; Evans, W.; Gault, W.; Hersom, C.; Kendall, D.; Lathuillère, C.; Lowe, R.; McDade, I.; Rochon, Y.; Shepherd, M.; Solheim, B.; Wang, D.-Y.; Ward, W.;

Published by: Reviews of Geophysics      Published on: 06/2012

YEAR: 2012     DOI: 10.1029/2012RG000390

airglow; dynamics; interferometers; mesosphere; temperature; winds

Upper Atmospheric Density Retrievals from UVIS Dayglow Observations of Titan

Stevens, Michael; Evans, JS; Ajello, JM; Bradley, ET; Meier, RR; Westlake, JH; Waite, JH;

Published by:       Published on:

YEAR: 2012     DOI:

Comment on “Long-term variation in the thermosphere: TIMED/GUVI observations” by Y. Zhang and LJ Paxton

Strickland, DJ; Evans, JS; Correira, J;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2012     DOI:

Parameterization of the ion convection and the auroral oval in the NCAR thermospheric general circulation models

Emery, B; Roble, Raymond; Ridley, Cicely; Richmond, Arthur; Knipp, Delores; Crowley, Geoff; Evans, David; Rich, Frederick; Maeda, Sawako;

Published by: NCAR Tech. Note NCAR/TN-491+ STR      Published on:

YEAR: 2012     DOI:

2011

The production of Titan\textquoterights ultraviolet nitrogen airglow

Stevens, Michael; Gustin, Jacques; Ajello, Joseph; Evans, Scott; Meier, R.; Kochenash, Andrew; Stephan, Andrew; Stewart, Ian; Esposito, Larry; McClintock, William; Holsclaw, Greg; Bradley, Todd; Lewis, B.; Heays, A.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2011

YEAR: 2011     DOI: 10.1029/2010JA016284

Solar extreme ultraviolet irradiance: Present, past, and future

Lean, J.; Woods, T.; Eparvier, F.; Meier, R.; Strickland, D.; Correira, J.; Evans, J.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2011

YEAR: 2011     DOI: 10.1029/2010JA015901

A downward revision of a recently reported proton auroral LBH emission efficiency

Correira, J; Strickland, DJ; Evans, JS; Knight, HK; Hecht, JH;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2011     DOI:

Comparison of solar energy flux Q EUV (< 45 nm) from SSUSI, GUVI, EVE, SEE, and SEM

Correira, J; Evans, JS; Strickland, DJ;

Published by:       Published on:

YEAR: 2011     DOI:

2010

NO 2 air afterglow and O and NO densities from Odin-OSIRIS night and ACE-FTS sunset observations in the Antarctic MLT region

Gattinger, R.; McDade, I.; an, A.; Boone, C.; Walker, K.; Bernath, P.; Evans, W.; Degenstein, D.; Yee, J.-H.; Sheese, P.; Llewellyn, E.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2010

YEAR: 2010     DOI: 10.1029/2009JD013205

A new proton auroral extrapolation method applied in the estimation of FUV emission yields

Knight, HK; Strickland, DJ; Correira, J; Evans, JS; Hecht, JH;

Published by:       Published on:

YEAR: 2010     DOI:

Ionospheric E-Region Chemistry and Energetics

Mertens, Christopher; Mlynczak, Martin; Gronoff, Guillaume; Yee, Jeng-Hwa; Swenson, Charles; Fish, Chad; Wellard, Stan; Lumpe, Jerry; Strickland, Doug; Evans, Scott;

Published by: To propose an Earth-observing, multi-satellite science mission to explore the last remaining frontier in upper atmospheric research—the ionospheric E-region      Published on:

YEAR: 2010     DOI:

Using FUV remote-sensing methods to investigate solar EUV variability with the aid of TIMED/GUVI observations

Correira, J; Strickland, DJ; Evans, JS; Knight, HK;

Published by:       Published on:

YEAR: 2010     DOI:

NO2 air afterglow and O and NO densities from Odin-OSIRIS night and ACE-FTS sunset observations in the Antarctic MLT region

Gattinger, RL; McDade, IC; an, AL; Boone, CD; Walker, KA; Bernath, PF; Evans, WFJ; Degenstein, DA; Yee, J-H; Sheese, P; , others;

Published by: Journal of Geophysical Research: Atmospheres      Published on:

YEAR: 2010     DOI:

Global views of energetic particle precipitation and their sources: Combining large-scale models with observations during the 21-22 January 2005 magnetic storm

Kozyra, JU; Brandt, PC; Cattell, CA; Clilverd, M; de Zeeuw, D; Evans, DS; Fang, X; Frey, HU; Kavanagh, AJ; Liemohn, MW; , others;

Published by:       Published on:

YEAR: 2010     DOI:

2009

Influence of solar-geomagnetic disturbances on SABER measurements of 4.3 Micrometer emission and the retrieval of kinetic temperature and carbon dioxide

Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October\textendashNovember 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.

Mertens, Christopher; Winick, Jeremy; Picard, Richard; Evans, David; opez-Puertas, Manuel; Wintersteiner, Peter; Xu, Xiaojing; Mlynczak, Martin; Russell, James;

Published by: Advances in Space Research      Published on:

YEAR: 2009     DOI: 10.1016/j.asr.2008.10.029

Solar wind structure sources and periodicities of auroral electron power over three solar cycles

We assess the contributions of various types of solar wind structures (transients, coronal hole high-speed streams (HSS), and slow-speed wind) to hourly average auroral electron power (Pe). The time variation of the solar wind velocity (Vsw) and Pe are determined by HSS, which contribute ∼47\% to Pe and Vsw. Transients contribute ∼42\% of Pe in solar maxima, and ∼6\% in solar minimum. Cross-correlations of Pe with Vsw|B| for negative Bz are significant. Pe exhibits solar rotational periodicities similar to those for Vsw, with strong 7- and 9-day periodicities in 2005–2008 and equinox semiannual periodicities in 1995–1999.

Emery, Barbara; Richardson, Ian; Evans, David; Rich, Frederick;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on:

YEAR: 2009     DOI: https://doi.org/10.1016/j.jastp.2008.08.005

Electron auroral energy fluxes; Solar wind speed structures; Solar cycle variations; Periodicities

The Production of Titan’s Far Ultraviolet Nitrogen Airglow

Stevens, Michael; Gustin, Jacques; Ajello, Joseph; Evans, Scott; Meier, RR; Stephan, Andrew; Stewart, Ian; Larsen, Kristopher; Esposito, Larry; McClintock, William;

Published by: Space      Published on:

YEAR: 2009     DOI:

2008

Satellite and ground-based observations of auroral energy deposition and the effects on thermospheric composition during large geomagnetic storms: 1. Great geomagnetic storm of 20 November 2003

Hecht, JH; Mulligan, T; Strickland, DJ; Kochenash, AJ; Murayama, Y; Tanaka, Y-M; Evans, DS; Conde, MG; Donovan, EF; Rich, FJ; , others;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI:

Evidence for significantly greater N2 Lyman-Birge-Hopfield emission efficiencies in proton versus electron aurora based on analysis of coincident DMSP SSUSI and SSJ/5 data

Knight, HK; Strickland, DJ; Hecht, JH; Straus, PR; Morrison, D; Paxton, LJ; Evans, DS;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI:

2007

Ionospheric E-region response to solar-geomagnetic storms observed by TIMED/SABER and application to IRI storm-model development

The large thermospheric infrared radiance enhancements observed from the TIMED/SABER experiment during recent solar storms provide an exciting opportunity to study the influence of solar-geomagnetic disturbances on the upper atmosphere and ionosphere. In particular, nighttime enhancements of 4.3μm emission, due to vibrational excitation and radiative emission by NO+, provide an excellent proxy to study and analyze the response of the ionospheric E-region to auroral electron dosing and storm-time enhancements to the E-region electron density. In this paper, we give a status report of on-going work on model and data analysis methodologies of deriving NO+ 4.3μm volume emission rates, a proxy for the storm-time E-region response, and the approach for deriving an empirical storm-time correction to IRI E-region NO+ and electron densities.

Mertens, Christopher; Mast, Jeffrey; Winick, Jeremy; Russell, James; Mlynczak, Martin; Evans, David;

Published by: Advances in Space Research      Published on:

YEAR: 2007     DOI: https://doi.org/10.1016/j.asr.2006.09.032

Ionosphere; Magnetic storms; Ion-neutral chemistry; Non-LTE; Radiation transfer

Global inventory of precipitating populations during the 15-30 January 2005 long-duration flares and magnetic storms: Relative efficacy at ozone destruction

Kozyra, JU; Cattell, CA; Clilverd, M; Evans, DS; Kavanagh, A; Liemohn, MW; Mende, SB; Paxton, LJ; Ridley, A; Soraas, F;

Published by:       Published on:

YEAR: 2007     DOI:

2005

Auroral-E electron density profiles to be derived from SESS particle data

Evans, JS; Daniell, RE; Knight, H; Strickland, DJ; Rodriguez, JV;

Published by:       Published on:

YEAR: 2005     DOI:

2002

The Relative Atmospheric Impacts and Energy Inputs of Precipitating Solar and Magnetospheric Ion and Electron Populations during the 17-24 April 2002 Events

Kozyra, JU; Baker, DN; Crowley, G; Evans, DS; Fang, X; Frahm, RA; Kanekal, SG; Liemohn, MW; Lu, G; Mason, GM; , others;

Published by:       Published on:

YEAR: 2002     DOI:

1998

Design and performance of the Global Ultraviolet Imager (GUVI)

Humm, David; Paxton, Larry; Christensen, Andrew; Ogorzalek, Bernard; Pardoe, Thompson; Meng, Ching-I; Morrison, Daniel; Strickland, Douglas; Evans, Scott; Weiss, Michele; , others;

Published by:       Published on:

YEAR: 1998     DOI:

Design and performance of the Global Ultraviolet Imager (GUVI)

The Global UV imager (GUVI) is an imaging spectrometer on the NASA TIMED spacecraft. GUVI produces simultaneous monochromatic images at five \textquoterightcolors\textquoteright as its field of view is scanned from horizon to horizon. The instrument consists of a scan mirror feeding a parabolic telescope and Rowland circle spectrometer, with a wedge-and-strip detector at the focal plane. We describe the design, and give an overview of the environmental parameters that will be measured. GUVI is a modified version of the Special Sensor UV Spectrographic Imager (SSUSI), which will fly on the DMSP Block 5D3 satellites S-16 through S-20, We present some results from the optical calibration of the five SSUSI units.

Humm, D.~C.; Paxton, L.J.; Christensen, A.~B.; Ogorzalek, B.~S.; Pardoe, C.~T.; Meng, C.-I.; Morrison, D.; Strickland, D.~J.; Evans, J.~S.; Weiss, M.~B.; Crain, W.; Lew, P.~H.; Mabry, D.~J.; Goldsten, J.~O.; Gary, S.~A.; Peacock, K.; Persons, D.~F.; Harold, M.~J.; Alvarez, E.~B.; Ercol, C.~J.;

Published by:       Published on:

YEAR: 1998     DOI:

1994

Continued development of radiance models and imaging software for the reduction, analysis, and visualization of space-based UV imaging data

Cox, Robin; Strickland, Douglas; Evans, Scott; Wright, KC; Paxton, Larry;

Published by:       Published on:

YEAR: 1994     DOI:



  1