Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 24 entries in the Bibliography.


Showing entries from 1 through 24


2022

Chapter 4 - Energetic particle dynamics, precipitation, and conductivity

This chapter reviews cross-scale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere system via convection, precipitation, and conductance. It begins with an introduction into Earth’s plasma sheet characteristics including particles, plasma moments, and magnetic fields, and their dependence on solar wind and interplanetary magnetic field parameters. Section 4.2 transitions to observations of the magnetosphere convection, precipitation, and coupling with the ionosphere on multiple scales, with Section 4.3 focusing on related global modeling efforts for particle precipitation. This chapter describes basic concepts and principles of major pitch angle scattering processes—wave-particle interactions and field-line curvature scattering—as well as the resulting precipitation and conductance. Section 4.4 continues the discussion started in 4.2 Observations of multiscale convection, precipitation, and conductivity, 4.3 Simulating particle precipitation of magnetospheric origin in global models regarding the resulting ionosphere conductance, delving more deeply into empirical and data assimilative techniques. This chapter describes techniques used over the years to observe and model precipitation and conductance on multiple scales.

Gabrielse, Christine; Kaeppler, Stephen; Lu, Gang; Wang, Chih-Ping; Yu, Yiqun; Nishimura, Yukitoshi; Verkhoglyadova, Olga; Deng, Yue; Zhang, Shun-Rong;

Published by:       Published on: jan

YEAR: 2022     DOI: 10.1016/B978-0-12-821366-7.00002-0

Conductance; Conductivity; Convection; particle precipitation

2019

Space Weather Modeling Capabilities Assessment: Auroral Precipitation and High-Latitude Ionospheric Electrodynamics

As part of its International Capabilities Assessment effort, the Community Coordinated Modeling Center initiated several working teams, one of which is focused on the validation of models and methods for determining auroral electrodynamic parameters, including particle precipitation, conductivities, electric fields, neutral density and winds, currents, Joule heating, auroral boundaries, and ion outflow. Auroral electrodynamic properties are needed as input to space weather models, to test and validate the accuracy of physical models, and to provide needed information for space weather customers and researchers. The working team developed a process for validating auroral electrodynamic quantities that begins with the selection of a set of events, followed by construction of ground truth databases using all available data and assimilative data analysis techniques. Using optimized, predefined metrics, the ground truth data for selected events can be used to assess model performance and improvement over time. The availability of global observations and sophisticated data assimilation techniques provides the means to create accurate ground truth databases routinely and accurately.

Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; Liemohn, Michael; Weygand, James; Crowley, Geoffrey; Merkin, Viacheslav; McGranaghan, Ryan; Mannucci, Anthony;

Published by: Space Weather      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018SW002127

Space weather modeling capabilities assessment: Auroral precipitation and high-latitude ionospheric electrodynamics

Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; , others;

Published by: Space Weather      Published on:

YEAR: 2019     DOI:

2018

Estimation of the ionosphere-thermosphere energy budget during geomagnetic storms with GITM, satellite observations and empirical models

Improving modeling of the ionosphere-thermosphere (IT) energy budget is important for correct representation of the IT system and physics-based space weather forecasting. We present a framework for estimation of the IT energy budget with the physics-based Global Ionosphere-Thermosphere Model (GITM), empirical models and observations. The approach is illustrated for the 16-19 March 2013 and 2015 geomagnetic storms. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are utilized to drive GITM. We focus on contributions to the energy budget from auroral heating, Joule heating, thermospheric nitric oxide (NO) and carbon dioxide (CO2) cooling emissions. Empirical models of auroral hemispheric power based on the TIMED/GUVI measurements and of the Joule heating are used. The cooling emission powers and fluxes are derived from TIMED/SABER measurements.

Verkhoglyadova, Olga; Meng, Xing; Mannucci, Anthony; Mlynczak, Martin; Hunt, Linda; Lu, Gang;

Published by: 2018 Triennial Earth-Sun Summit (TESS      Published on:

YEAR: 2018     DOI:

Middle and low-latitude ionosphere-thermosphere responses to solar wind driving during CME-type storms

Verkhoglyadova, Olga; Mlynczak, MG; Mannucci, Anthony; Paxton, Larry; Hunt, Linda; Komjathy, Attila;

Published by: 42nd COSPAR Scientific Assembly      Published on:

YEAR: 2018     DOI:

Observational aspects of the IT energy budget at the multi-scales

Verkhoglyadova, OP; Meng, X; Mannucci, AJ; McGranaghan, R;

Published by:       Published on:

YEAR: 2018     DOI:

2017

Revisiting Ionosphere-Thermosphere Responses to Solar Wind Driving in Superstorms of November 2003 and 2004

We revisit three complex superstorms of 19\textendash20 November 2003, 7\textendash8 November 2004, and 9\textendash11 November 2004 to analyze ionosphere-thermosphere (IT) effects driven by different solar wind structures associated with complex interplanetary coronal mass ejections (ICMEs) and their upstream sheaths. The efficiency of the solar wind-magnetosphere connection throughout the storms is estimated by coupling functions. The daytime IT responses to the complex driving are characterized by combining and collocating (where possible) measurements of several physical parameters (total electron content or TEC, thermospheric infrared nitric oxide emission, and composition ratio) from multiple satellite platforms and ground-based measurements. A variety of metrics are utilized to examine global IT phenomena at ~1\ h timescales. The role of direct driving of IT dynamics by solar wind structures and the role of IT preconditioning in these storms, which feature complex unusual TEC responses, are examined and contrasted. Furthermore, IT responses to ICME magnetic clouds and upstream sheaths are separately characterized. We identify IT feedback effects that can be important for long-lasting strong storms. The role of the interplanetary magnetic field By component on ionospheric convection may not be well captured by existing coupling functions. Mechanisms of thermospheric overdamping and consequential ionospheric feedback need to be further studied.

Verkhoglyadova, O.; Komjathy, A.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Paxton, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.1010.1002/2017JA024542

Ionosphere-thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies

The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16\textendash19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.

Verkhoglyadova, O.; Meng, X.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Lu, G.;

Published by: Space Weather      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/swe.v15.910.1002/2017SW001650

Geospace system responses to the St. Patrick's Day storms in 2013 and 2015

This special collection includes 31 research papers investigating geospace system responses to the geomagnetic storms during the St. Patrick\textquoterights Days of 17 March 2013 and 2015. It covers observation, data assimilation, and modeling aspects of the storm time phenomena and their associated physical processes. The ionosphere and thermosphere as well as their coupling to the magnetosphere are clearly the main subject areas addressed. This collection provides a comprehensive picture of the geospace response to these two major storms. We provide some highlights of these studies in six specific areas: (1) global and magnetosphere/plasmasphere perspectives, (2) high-latitude responses, (3) subauroral and midlatitude processes, (4) effects of prompt penetration electric fields and disturbance dynamo electric fields, (5) effects of neutral dynamics and perturbation, and (6) storm effects on plasma bubbles and irregularities. We also discuss areas of future challenges and the ways to move forward in advancing our understanding of the geospace storm time behavior and space weather effects.

Zhang, Shun-Rong; Zhang, Yongliang; Wang, Wenbin; Verkhoglyadova, Olga;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017JA024232

Multiinstrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm

We present a multiinstrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm, which had the largest impact on the disturbance storm-time index that year. The geomagnetic storm was the result of two powerful Earth-directed coronal mass ejections (CMEs). It produced a strong long lasting negative storm phase over Greenland with a dominant energy input in the polar cap. We employed global navigation satellite system (GNSS) networks, geomagnetic observatories, and a specific ionosonde station in Greenland. We complemented the approach with spaceborne measurements in order to map the state and variability of the Arctic ionosphere. In situ observations from the Canadian CASSIOPE (CAScade, Smallsat and Ionospheric Polar Explorer) satellite\textquoterights ion mass spectrometer were used to derive ion flow data from the polar cap topside ionosphere during the event. Our research specifically found that (1) thermospheric O/N 2 measurements demonstrated significantly lower values over the Greenland sector than prior to the storm time. (2) An increased ion flow in the topside ionosphere was observed during the negative storm phase. (3) Negative storm phase was a direct consequence of energy input into the polar cap. (4) Polar patch formation was significantly decreased during the negative storm phase. This paper addresses the physical processes that can be responsible for this ionospheric storm development in the northern high latitudes. We conclude that ionospheric heating due to the CME\textquoterights energy input caused changes in the polar atmosphere resulting in N e upwelling, which was the major factor in high-latitude ionosphere dynamics for this storm.

Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Shume, Esayas; Benzon, Hans-Henrik; Mannucci, Anthony; Butala, Mark; H\oeg, Per; Langley, Richard;

Published by: Radio Science      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016RS006106

Superstorms of November 2003 and 2004: the role of solar wind driving in the ionosphere-thermosphere dynamics

Verkhoglyadova, Olga; Komjathy, Attila; Mannucci, Anthony; Mlynczak, Martin; Hunt, Linda; Paxton, Larry;

Published by:       Published on:

YEAR: 2017     DOI:

2016

Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015

We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)-driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74\textendash79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere-thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low-latitude and northern middle-latitude vertical total electron content responses in the morning, afternoon, and evening local time ranges, derived from measurements from globally distributed Global Navigation Satellite System ground stations. Our novel technique of estimating nitric oxide (NO) cooling radiation in 11\textdegree latitudinal zones is based on Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements. The thermospheric cooling throughout the storm phases is studied with this high latitudinal resolution for the first time. Additionally, TIMED/Global Ultraviolet Imager (GUVI) observations of the dynamical response of the thermospheric composition (O/N2 ratio) are utilized to study negative ionospheric storm effects. Based on these data sets, we describe and quantify distinct IT responses to driving by ICME sheaths, magnetic clouds, coronal loop remnants, plasma discontinuities, and high-speed streams following ICMEs. Our analysis of coupling functions indicates strong connection between coupling with the solar wind and IT system response in ICME-type storms and also some differences. Knowledge of interplanetary features is crucial for understanding IT storm dynamics.

Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Paxton, L.; Komjathy, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.910.1002/2016JA022883

Heliosphere-ionosphere-thermosphere coupling and energy budget in geomagnetic storms

1. Solar irradiance: F10. 7 2. High-latitude electric and magnetic field potential patterns and field-aligned currents (FAC): empirical Weimer05 model (Weimer, 2005), can use AMIE input

Verkhoglyadova, OP; Mannucci, AJ; Meng, X; Komjathy, A; Mlynczak, MG; Hunt, LA; Tsurutani, BT;

Published by:       Published on:

YEAR: 2016     DOI:

Analysis of High-Latitude Ionospheric Processes During the Nov 2015 HSS and CME-Induced Geomagnetic Storm: A Multi-Instrument Observational Approach

Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Hoeg, Per; Paul, Ashik;

Published by:       Published on:

YEAR: 2016     DOI:

Multi-Instrument Observations of Geomagnetic Storms in the Arctic Ionosphere

Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Shume, Esayas; Benzon, Hans-Henrik; Mannucci, Anthony; Butala, Mark; H\oeg, Per; Langley, Richard;

Published by:       Published on:

YEAR: 2016     DOI:

2015

Use of radio occultation to probe the high-latitude ionosphere

We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere\textendashionosphere because of the important role of conductivity on high-latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejection (CME) storms are examined with the COSMIC data. We find clear correlation between geomagnetic activity and electron density retrievals from COSMIC. At nighttime local times, the number of profiles with maximum electron densities in the E layer (below 200 km altitude) is well correlated with geomagnetic activity. We interpret this to mean that electron density increases due to precipitation are captured by the COSMIC profiles. These "E-layer-dominant ionosphere" (ELDI) profiles have geomagnetic latitudes that are consistent with climatological models of the auroral location. For the two HSS storms that occurred in May of 2011 and 2012, a strong hemispheric asymmetry is observed, with nearly all the ELDI profiles found in the Southern, less sunlit, Hemisphere. Stronger aurora and precipitation have been observed before in winter hemispheres, but the degree of asymmetry deserves further study. For the two CME storms, occurring in July and November of 2012, large increases in the number of ELDI profiles are found starting in the storm\textquoterights main phase but continuing for several days into the recovery phase. Analysis of the COSMIC profiles was extended to all local times for the July 2012 CME storm by relaxing the ELDI criterion and instead visually inspecting all profiles above 50\textdegree magnetic latitude for signatures of precipitation in the E region. For 9 days during the July 2012 period, we find a signature of precipitation occurs nearly uniformly in local time, although the magnitude of electron density increase may vary with local time. The latitudinal extent of the precipitation layers is generally consistent with auroral climatology. However, after the storm main phase on 14 July 2012 the precipitation tended to be somewhat more equatorward than the climatology (by about 5\textendash10\textdegree latitude) and equatorward of the auroral boundary data acquired from the SSUSI sensor onboard the F18 DMSP satellite. We conclude that, if analyzed appropriately, high-latitude COSMIC profiles have the potential to contribute to our understanding of MI coupling processes and extend and improve existing models of the auroral region.

Mannucci, A.; Tsurutani, B.; Verkhoglyadova, O.; Komjathy, A.; Pi, X.;

Published by: Atmospheric Measurement Techniques      Published on: 07/2015

YEAR: 2015     DOI: 10.5194/amt-8-2789-2015

Recent Developments in Understanding Natural-Hazards-Generated TEC Perturbations: Measurements and Modeling Results

Natural hazards generate waves in the thermosphere and ionosphere that may be detected using ground and space-based GPS observations. There is an abundance of current and future GNSS signals that we can use in a real-time and post-processing modes.

Verkhoglyadova, AJ; Langley, RB;

Published by:       Published on:

YEAR: 2015     DOI:

Solar wind driving of ionosphere-thermosphere responses during three storms on St. Patrick's Day.

Verkhoglyadova, Olga; Tsurutani, Bruce; Mannucci, Anthony; Komjathy, Attila; Mlynczak, Martin; Hunt, Linda; Paxton, Larry;

Published by:       Published on:

YEAR: 2015     DOI:

2014

Interplanetary magnetic field By control of prompt total electron content increases during superstorms

Large magnitude increases in ionospheric total electron content (TEC) that occur over 1\textendash3\ h on the dayside are a significant manifestation of the main phases of superstorms. For the largest superstorms of solar cycle 23 (based on the Dst index), ground networks of GPS receivers measured peak total electron content increases greater than a factor of 2 relative to quiet time TEC averaged over the broad latitude band \textpm40\textdegree for local times 1200\textendash1600\ LT. Near 30\textdegree latitude, the Halloween storms of October 29\textendash30, 2003 appeared to produce storm-time TEC exceeding quiet time values by a factor of 5 within 2\textendash3\ h of storm onset, at 1300\ LT. The physical cause of these large positive phase ionospheric storms is usually attributed to prompt penetration electric fields (PPEFs) initiated by Region 1 current closure through the ionosphere ( Nopper and Carovillano, 1978 mechanism). An unresolved question is what determines variation of the TEC response for different superstorms. It has been suggested that the cross polar cap potential and Region 1 currents are significant factors in determining PPEF in the equatorial ionosphere, which are related to the solar wind reconnection electric field estimated by Kan\textendashLee and others. In this paper, we show evidence that suggests By may be a significant factor controlling the TEC response during the main phase of superstorms. We analyzed the interplanetary conditions during the period that TEC was increasing for eight superstorms. We find that increasing daytime TEC during superstorms only occurs for large reconnection electric fields when By magnitude is less than Bz. The data suggest that Bz is a far more important factor in the TEC response than the reconnection electric field. We also find that TEC decreases following its peak storm-time value for two superstorms, even though Bz remains large and By magnitudes are less than Bz. Such decreases during the geomagnetic disturbance may indicate the role of magnetospheric shielding currents, or of changes in the thermosphere that have developed over the prolonged period of large solar wind electric field. Further analysis is warranted covering a wider range of storm intensities on the role of By in affecting the daytime TEC response for a range of storm intensities.

Mannucci, A.J.; Crowley, G.; Tsurutani, B.T.; Verkhoglyadova, O.P.; Komjathy, A.; Stephens, P.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1016/j.jastp.2014.01.001

Geomagnetic storms; Ionosphere

Ionospheric TEC, thermospheric cooling and $\Sigma$ [O/N2] compositional changes during the 6--17 March 2012 magnetic storm interval (CAWSES II)

A series of four geomagnetic storms (the minimum SYM-H~-148\ nT) occurred during the March 6\textendash17, 2012 in the ascending phase of the solar cycle 24. This interval was selected by CAWSES II for its campaign. The GPS total electron content (TEC) database and JPL\textquoterights Global Ionospheric Maps (GIM) were used to study vertical TEC (VTEC) for different local times and latitude ranges. The largest response to geomagnetic activity is shown in increases of the low-latitude dayside VTEC. Several GPS sites feature post-afternoon VTEC \textquotedblleftbite-outs\textquotedblright. During Sudden Impulse (SI+) event on March 8th a peak daytime VTEC restores to about quiet-time values. It is shown that the TIMED/SABER zonal flux of nitric oxide (NO) infrared cooling radiation correlates well with auroral heating. A factor of ~5 cooling increase is noted in some storms. The cooling radiation intensifies in the auroral zone and spreads towards the equator. Effects of the storm appear at lower latitudes ~18.6\ h later. The column density ratio Σ[O/N2] is analyzed based on TIMED/GUVI measurements. Both increases (at low latitudes) and decreases (from auroral to middle latitudes) in the ratio occurs during the geomagnetic storms. We suggest that the column density ratio could be enhanced at low to middle latitudes on the dayside partially due to the superfountain effect (atomic oxygen uplift due to ion-neutral drag). It is suggested that decreases in the Σ[O/N2] ratio at high to middle-latitudes may be caused by high thermospheric temperatures. During SI+s, there is an increase in Σ[O/N2] ratio at auroral latitudes.

Verkhoglyadova, O.P.; Tsurutani, B.T.; Mannucci, A.J.; Mlynczak, M.G.; Hunt, L.A.; Paxton, L.J.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1016/j.jastp.2013.11.009

Geomagnetic storms; Ionosphere; thermosphere

Solar filament impact on 21 January 2005: Geospace consequences

On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the massive solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection decelerated moving toward 1 AU creating the appearance of an eroded flux rope (see companion paper by Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact, the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief superfountain in the equatorial ionosphere\textemdashan unusual occurrence for a moderate storm. Within 1 h after impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities reached tens per cubic centimeter along the flanks\textemdashhigh enough to inflate the magnetotail in the simulation under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching was provided by a corresponding expansion and intensification of both the auroral oval and ring current precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in the cusps, a by-product of the CDPS formation process, contributed to an equatorward neutral wind surge that reached low latitudes within 1\textendash2 h and intensified the equatorial ionization anomaly. Understanding the geospace consequences of extremes in density and pressure is important because some of the largest and most damaging space weather events ever observed contained similar intervals of dense solar material.

Kozyra, J.; Liemohn, M.; Cattell, C.; De Zeeuw, D.; Escoubet, C.; Evans, D.; Fang, X.; Fok, M.-C.; Frey, H.; Gonzalez, W.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W.; Mende, S.; Paxton, L.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M.; Tsurutani, B.; Verkhoglyadova, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2013JA019748

cold dense plasma sheet; Equatorial anomaly; magnetotail; precipitation; prompt penetration electric field; solar filament

2013

Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): external high speed stream drivers

We study solar wind\textendashionosphere coupling through the late declining phase/solar minimum and geomagnetic minimum phases during the last solar cycle (SC23) \textendash 2008 and 2009. This interval was characterized by sequences of high-speed solar wind streams (HSSs). The concomitant geomagnetic response was moderate geomagnetic storms and high-intensity, long-duration continuous auroral activity (HILDCAA) events. The JPL Global Ionospheric Map (GIM) software and the GPS total electron content (TEC) database were used to calculate the vertical TEC (VTEC) and estimate daily averaged values in separate latitude and local time ranges. Our results show distinct low- and mid-latitude VTEC responses to HSSs during this interval, with the low-latitude daytime daily averaged values increasing by up to 33 TECU (annual average of ~20 TECU) near local noon (12:00 to 14:00 LT) in 2008. In 2009 during the minimum geomagnetic activity (MGA) interval, the response to HSSs was a maximum of ~30 TECU increases with a slightly lower average value than in 2008. There was a weak nighttime ionospheric response to the HSSs. A well-studied solar cycle declining phase interval, 10\textendash22 October 2003, was analyzed for comparative purposes, with daytime low-latitude VTEC peak values of up to ~58 TECU (event average of ~55 TECU). The ionospheric VTEC changes during 2008\textendash2009 were similar but ~60\% less intense on average. There is an evidence of correlations of filtered daily averaged VTEC data with Ap index and solar wind speed.

We use the infrared NO and CO2 emission data obtained with SABER on TIMED as a proxy for the radiation balance of the thermosphere. It is shown that infrared emissions increase during HSS events possibly due to increased energy input into the auroral region associated with HILDCAAs. The 2008\textendash2009 HSS intervals were ~85\% less intense than the 2003 early declining phase event, with annual averages of daily infrared NO emission power of ~ 3.3 \texttimes 1010 W and 2.7 \texttimes 1010 W in 2008 and 2009, respectively. The roles of disturbance dynamos caused by high-latitude winds (due to particle precipitation and Joule heating in the auroral zones) and of prompt penetrating electric fields (PPEFs) in the solar wind\textendashionosphere coupling during these intervals are discussed. A correlation between geoeffective interplanetary electric field components and HSS intervals is shown. Both PPEF and disturbance dynamo mechanisms could play important roles in solar wind\textendashionosphere coupling during prolonged (up to days) external driving within HILDCAA intervals.

Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Runge, T.;

Published by: Annales Geophysicae      Published on: 01/2013

YEAR: 2013     DOI: 10.5194/angeo-31-263-2013

Ionosphere; Magnetospheric physics; Storms; substorms

Comparison of Ionospheric and Thermospheric Effects During Two High Speed Stream Events

Verkhoglyadova, OP; Tsurutani, B; Mannucci, AJ; Paxton, L; Mlynczak, MG; Hunt, LA; Echer, E;

Published by:       Published on:

YEAR: 2013     DOI:

2011

Ionospheric VTEC and thermospheric infrared emission dynamics during corotating interaction region and high-speed stream intervals at solar minimum: 25 March to 26 April 2008

Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Komjathy, A.; Runge, T.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2011

YEAR: 2011     DOI: 10.1029/2011JA016604



  1