Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2021

Auroral Energy Flux and Joule Heating Derived From Global Maps of Field-Aligned Currents

We calculate auroral energy flux and Joule heating in the high-latitude ionosphere for 27 geomagnetically active days using two-dimensional maps of field-aligned currents determined by the Active Magnetosphere and Planetary Response Experiment. The energy input to the ionosphere due to Joule heating increases more rapidly with geomagnetic activity than that due to precipitating particles. The energy flux varies more smoothly with time than Joule heating, which is impulsive in nature on time scales from minutes to tens of minutes. These impulsive events correlate well with recoveries in the Sym-H index, with the maximum correlation when compared to Sym-H recoveries 70 min later. Because of prior studies that have associated transient recoveries of Sym-H with substorm expansions, the delay found here suggests that dissipation of energy in the ionosphere occurs during the substorm growth phase prior to the release of magnetic energy caused by diversion of tail currents.

Robinson, R.; Zanetti, L.;

Published by: Geophysical Research Letters      Published on:

YEAR: 2021     DOI: 10.1029/2020GL091527

Geomagnetic storms; Auroral energy flux; auroral energy input; auroral substorms; Joule heating; ring current

Determination of Auroral Electrodynamic Parameters From AMPERE Field-Aligned Current Measurements

We calculate high latitude electrodynamic parameters using global maps of field-aligned currents from the Active Magnetosphere and Planetary Response Experiment (AMPERE). The model is based on previous studies that relate field-aligned currents to auroral Pedersen and Hall conductances measured by incoherent scatter radar. The field-aligned currents and conductances are used to solve for the electric potential at high latitudes from which electric fields are computed. The electric fields are then used with the conductances to calculate horizontal ionospheric currents. We validate the results by simulating the SuperMAG magnetic indices for 30 geomagnetically active days. The correlation coefficients between derived and actual magnetic indices were 0.68, 0.76, and 0.84 for the SMU, SML, and SME indices, respectively. We show examples of times when the simulations differ markedly from the measured indices and attribute them to either small-scale, substorm-related current structures or the effects of neutral winds. Overall, the performance of the model demonstrates that with few exceptions, auroral electrodynamic parameters can be accurately deduced from the global field-aligned current distribution provided by AMPERE.

Robinson, R.; Zanetti, Larry; Anderson, Brian; Vines, Sarah; Gjerloev, Jesper;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2020SW002677

space weather; auroral currents; auroral electrodynamics; conductivities; electric fields; field-aligned currents

Explicit IMF By-Dependence in Geomagnetic Activity: Quantifying Ionospheric Electrodynamics

Geomagnetic activity is mainly driven by the southward (Bz) component of the interplanetary magnetic field (IMF), which dominates all solar wind coupling functions. Coupling functions also depend on the absolute value of the dawn-dusk (By) component of the IMF, but not on its sign. However, recent studies have shown that for a fixed level of solar wind driving, auroral electrojets in the Northern Hemisphere (NH) are stronger for By \textgreater 0 than for By \textless 0 during NH winter. In NH summer, the dependence on the By sign is reversed. While this By sign dependence, also called the explicit By-dependence, is very strong in the winter hemisphere, it is weak in the summer hemisphere. Moreover, the explicit By-dependence is much stronger in the westward electrojet than in the eastward electrojet. In this study, we study how the explicit IMF By-dependence is coupled with large-scale field-aligned currents (FACs) by using FAC measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and an empirical ionospheric conductance model. We model the complete ionospheric electrodynamics by solving the current continuity equation, and show that during periods of elevated solar wind driving (Bz \textless 0), the IMF By component modulates Regions 1 and 2 FACs in the dawn sector of the winter hemisphere. This leads to an explicit By-dependence in ionospheric conductance and the westward electrojet. We also show that the By-dependence of FACs and conductance is weak in the dusk sector, which explains the earlier observation of the weak By-dependence of the eastward electrojet.

Holappa, L.; Robinson, R.; Pulkkinen, A.; Asikainen, T.; Mursula, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029202

space weather; magnetosphere-ionosphere coupling; field-aligned currents; geomagnetic activity

2020

Statistical relations between auroral electrical conductances and field-aligned currents at high latitudes

Robinson, RM; Kaeppler, Stephen; Zanetti, Larry; Anderson, Brian; Vines, Sarah; Korth, Haje; Fitzmaurice, Anna;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

2019

Space Weather Modeling Capabilities Assessment: Auroral Precipitation and High-Latitude Ionospheric Electrodynamics

As part of its International Capabilities Assessment effort, the Community Coordinated Modeling Center initiated several working teams, one of which is focused on the validation of models and methods for determining auroral electrodynamic parameters, including particle precipitation, conductivities, electric fields, neutral density and winds, currents, Joule heating, auroral boundaries, and ion outflow. Auroral electrodynamic properties are needed as input to space weather models, to test and validate the accuracy of physical models, and to provide needed information for space weather customers and researchers. The working team developed a process for validating auroral electrodynamic quantities that begins with the selection of a set of events, followed by construction of ground truth databases using all available data and assimilative data analysis techniques. Using optimized, predefined metrics, the ground truth data for selected events can be used to assess model performance and improvement over time. The availability of global observations and sophisticated data assimilation techniques provides the means to create accurate ground truth databases routinely and accurately.

Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; Liemohn, Michael; Weygand, James; Crowley, Geoffrey; Merkin, Viacheslav; McGranaghan, Ryan; Mannucci, Anthony;

Published by: Space Weather      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018SW002127

Space weather modeling capabilities assessment: Auroral precipitation and high-latitude ionospheric electrodynamics

Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; , others;

Published by: Space Weather      Published on:

YEAR: 2019     DOI:

Advances in Auroral Studies I

Zhang, Yongliang; Paxton, Larry; Robinson, Robert; MacDonald, Elizabeth; Mitchell, Elizabeth;

Published by:       Published on:

YEAR: 2019     DOI:

2018

Statistical Relations Between Field-Aligned Currents and Precipitating Electron Energy Flux

Measurements of field-aligned currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment are combined with measurements of far ultraviolet emissions from the Global Ultraviolet Imager on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite to examine the correlation between parallel currents and auroral electron energy flux. The energy flux is derived from the far ultraviolet emissions in the N2 Lyman-Birge-Hopfield bands. We find that energy flux correlates with field-aligned currents in both upward and downward current regions. The correlations vary with magnetic local time with the strongest dependences near magnetic midnight. The data are binned and averaged to construct a model of precipitating particle energy flux as a function of field-aligned current and magnetic local time. With Active Magnetosphere and Planetary Electrodynamics Response Experiment data as input, the model yields accurate estimates of the hemispheric power input from precipitating particles.

Robinson, R.; Zhang, Y.; Anderson, B.; Zanetti, L.; Korth, H.; Fitzmaurice, A.;

Published by: Geophysical Research Letters      Published on: 08/2018

YEAR: 2018     DOI: 10.1029/2018GL078718



  1