Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Determination of Auroral Electrodynamic Parameters From AMPERE Field-Aligned Current Measurements



AuthorRobinson, R.; Zanetti, Larry; Anderson, Brian; Vines, Sarah; Gjerloev, Jesper;
Keywordsspace weather; auroral currents; auroral electrodynamics; conductivities; electric fields; field-aligned currents
AbstractWe calculate high latitude electrodynamic parameters using global maps of field-aligned currents from the Active Magnetosphere and Planetary Response Experiment (AMPERE). The model is based on previous studies that relate field-aligned currents to auroral Pedersen and Hall conductances measured by incoherent scatter radar. The field-aligned currents and conductances are used to solve for the electric potential at high latitudes from which electric fields are computed. The electric fields are then used with the conductances to calculate horizontal ionospheric currents. We validate the results by simulating the SuperMAG magnetic indices for 30 geomagnetically active days. The correlation coefficients between derived and actual magnetic indices were 0.68, 0.76, and 0.84 for the SMU, SML, and SME indices, respectively. We show examples of times when the simulations differ markedly from the measured indices and attribute them to either small-scale, substorm-related current structures or the effects of neutral winds. Overall, the performance of the model demonstrates that with few exceptions, auroral electrodynamic parameters can be accurately deduced from the global field-aligned current distribution provided by AMPERE.
Year of Publication2021
JournalSpace Weather
Volume19
Number of Pagese2020SW002677
Section
Date Published
ISBN
URLhttps://onlinelibrary.wiley.com/doi/abs/10.1029/2020SW002677
DOI10.1029/2020SW002677