Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 34 entries in the Bibliography.


Showing entries from 1 through 34


2022

Impacts of Lower Thermospheric Atomic Oxygen and Dynamics on the Thermospheric Semiannual Oscillation Using GITM and WACCM-X

The latitudinal and temporal variation of atomic oxygen (O) is opposite between the empirical model, NRLMSISE-00 (MSIS) and the whole atmosphere model, whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X) at 97–100 km. Atomic Oxygen from WACCM-X has maxima at solstices and summer mid-high latitudes, similar to [O] from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We use the densities and dynamics from WACCM-X to drive the Global Ionosphere Thermosphere Model (GITM) at its lower boundary and compare it with the MSIS driven GITM. We focus on the differences in the modeling of the thermospheric and ionospheric semiannual oscillation (T-I SAO). Our results reveal that driving GITM with WACCM-X causes the T-I SAO to maximize around solstices, opposite to when MSIS is used. This is because the global mixing in GITM during solstices is not strong enough to decrease the solstitial [O] densities below the equinoctial values between mesosphere and lower thermosphere (MLT) and upper thermosphere. Larger summer [O] in the MLT leads to the accumulation of [O] at lower latitudes in the thermosphere due to weaker meridional transport, which further increases the amplitude of the oppositely phased SAO. WACCM-X itself has the right phase of SAO in the upper thermosphere but wrong at lower altitudes. The exact mechanisms that can correct the phase of T-I SAO in GITM while using SABER-like [O] in the MLT are currently unknown and warrant further investigation. We suggest mechanisms that can reduce the solstitial maxima in the lower thermosphere, for example, stronger interhemispheric meridional winds, stronger residual circulation, seasonal variations in eddy diffusion, and momentum from breaking gravity waves.

Malhotra, Garima; Ridley, Aaron; , Jones;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029320

global ionosphere thermosphere modeling; semiannual oscillation; thermospheric and ionospheric SAO; thermospheric spoon mechanism; vertical coupling of thermosphere with lower atmosphere; whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X)

2021

FTA: A Feature Tracking Empirical Model of Auroral Precipitation

The Feature Tracking of Aurora (FTA) model was constructed using 1.5 years of Polar Ultraviolet Imager data and is based on tracking a cumulative energy grid in 96 magnetic local time (MLT) sectors. The equatorward boundary, poleward boundary, and 19 cumulative energy bins are tracked with the energy flux and the latitudinal position. With AE increasing, the equatorward boundary moves to lower latitudes everywhere, while the poleward boundary moves poleward in the 2300–0300 MLT region and equatorward in other MLT sectors. This results in the aurora getting wider on the nightside and becoming narrower on the dayside. The peak intensity of the aurora in each MLT sector is almost linearly related to AE, with the global peak moving from pre-midnight to post-midnight as geomagnetic activity increases. Ratios between the Lyman-Birge-Hopfield-long and -short models allow the average energy to be calculated. Predictions from the FTA and two other auroral models were compared to the measurements by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Spectrographic Imagers (SSUSI) on March 17, 2013. Among the three models, the FTA model specified the most confined patterns with the highest energy flux, agreeing with the spatial and temporal evolution of SSUSI measurements better and predicted auroral power (AP) better during higher activity levels (SSUSI AP \textgreater 20 GW). The Fuller-Rowell and Evans (1987) and FTA models specified very similar average energy compared with SSUSI measurements, doing slightly better by ∼1 keV than the OVATION Prime model.

Wu, Chen; Ridley, Aaron; DeJong, Anna; Paxton, Larry;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2020SW002629

Auroral Precipitation Model; cumulative energy bins; data-model comparisons; M-I coupling; statistical analyses

Twenty Years of Space-Based Observations of the Ionosphere-Thermosphere-Mesosphere System and a View to the Future

Mlynczak, Martin; Yee, Jeng-Hwa; Paxton, Larry; Ridley, Aaron;

Published by:       Published on:

YEAR: 2021     DOI:

Field-Aligned Current During an Interval of BY-Dominated Interplanetary-Field; Modeled-to-Observed Comparisons

Carter, Jennifer; Samsonov, AA; Milan, Stephen; Branduardi-Raymont, Graziella; Ridley, Aaron; Paxton, Larry; Anderson, Brian; Waters, Colin; Edwards, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI:

Field-aligned current during an interval of $$\backslash$rm B\_ $\$Y$\$ $-dominated interplanetary-field; modeled-to-observed comparisons

Carter, Jennifer; Samsonov, Andrey; Milan, Stephen; Branduardi-Raymont, Graziella; Ridley, Aaron; Paxton, Larry; Anderson, Brian; Waters, Colin; Edwards, Thomas;

Published by: Earth and Space Science Open Archive ESSOAr      Published on:

YEAR: 2021     DOI:

2020

Impacts of Lower Thermospheric Atomic Oxygen on Thermospheric Dynamics and Composition Using the Global Ionosphere Thermosphere Model

Malhotra, Garima; Ridley, Aaron; Marsh, Daniel; Wu, Chen; Paxton, Larry; Mlynczak, Martin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI:

2019

Understanding the Effects of Earth's Lower Atmosphere on Upper Ionospheric-Thermospheric Semi Annual Oscillation-Using GITM, MSIS and WACCM-X

The datasets that are used in these study for comparisons are GPS, GUVI, COSMIC and GRACE observations.

Malhotra, Garima; Ridley, Aaron; Marsh, Daniel; Wu, Chen; Paxton, Larry;

Published by:       Published on:

YEAR: 2019     DOI:

2018

Understanding the Effects of Lower Boundary variations on the Ionosphere-Thermosphere System using GITM and WACCM-X

Malhotra, Garima; Ridley, Aaron; Marsh, Daniel; Wu, Chen; Paxton, Larry;

Published by:       Published on:

YEAR: 2018     DOI:

2017

The effect of ring current electron scattering rates on magnetosphere-ionosphere coupling

This simulation study investigated the electrodynamic impact of varying descriptions of the diffuse aurora on the magnetosphere-ionosphere (M-I) system. Pitch angle diffusion caused by waves in the inner magnetosphere is the primary source term for the diffuse aurora, especially during storm time. The magnetic local time (MLT) and storm-dependent electrodynamic impacts of the diffuse aurora were analyzed using a comparison between a new self-consistent version of the Hot Electron Ion Drift Integrator with varying electron scattering rates and real geomagnetic storm events. The results were compared with Dst and hemispheric power indices, as well as auroral electron flux and cross-track plasma velocity observations. It was found that changing the maximum lifetime of electrons in the ring current by 2\textendash6\ h can alter electric fields in the nightside ionosphere by up to 26\%. The lifetime also strongly influenced the location of the aurora, but the model generally produced aurora equatorward of observations.

Perlongo, N.; Ridley, A.; Liemohn, M.; Katus, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023679

Understanding the Effects of Lower Boundary Conditions and Eddy Diffusion on the Ionosphere-Thermosphere System

Malhotra, Garima; Ridley, Aaron; Marsh, Daniel; Wu, Chen; Paxton, Larry;

Published by:       Published on:

YEAR: 2017     DOI:

2016

Hemispheric differences in the response of the upper atmosphere to the August 2011 geomagnetic storm: A simulation study

Using a three-dimensional nonhydrostatic general circulation model, we investigate the response of the thermosphere–ionosphere system to the 5–6 August 2011 major geomagnetic

Yi\ugit, Erdal; Frey, Harald; Moldwin, Mark; Immel, Thomas; Ridley, Aaron;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on:

YEAR: 2016     DOI: 10.1016/j.jastp.2015.10.002

2015

Exploring Geospace: Novel Instruments and New Opportunities II Posters

Paxton, Larry; Ridley, Aaron; Rowland, Douglas; Vierinen, Juha;

Published by:       Published on:

YEAR: 2015     DOI:

2014

Solar filament impact on 21 January 2005: Geospace consequences

On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the massive solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection decelerated moving toward 1 AU creating the appearance of an eroded flux rope (see companion paper by Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact, the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief superfountain in the equatorial ionosphere\textemdashan unusual occurrence for a moderate storm. Within 1 h after impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities reached tens per cubic centimeter along the flanks\textemdashhigh enough to inflate the magnetotail in the simulation under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching was provided by a corresponding expansion and intensification of both the auroral oval and ring current precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in the cusps, a by-product of the CDPS formation process, contributed to an equatorward neutral wind surge that reached low latitudes within 1\textendash2 h and intensified the equatorial ionization anomaly. Understanding the geospace consequences of extremes in density and pressure is important because some of the largest and most damaging space weather events ever observed contained similar intervals of dense solar material.

Kozyra, J.; Liemohn, M.; Cattell, C.; De Zeeuw, D.; Escoubet, C.; Evans, D.; Fang, X.; Fok, M.-C.; Frey, H.; Gonzalez, W.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W.; Mende, S.; Paxton, L.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M.; Tsurutani, B.; Verkhoglyadova, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2013JA019748

cold dense plasma sheet; Equatorial anomaly; magnetotail; precipitation; prompt penetration electric field; solar filament

Strong ionospheric field-aligned currents for radial interplanetary magnetic fields

The present work has investigated the configuration of field-aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high-resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF By and Bz are weakly positive and Bx keeps pointing to the Earth for almost 10 h. The geomagnetic indices Dst is about -40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10\textendash20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m2, the plasma convection maintains two-cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low-level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region.

Wang, Hui; Lühr, Hermann; Shue, Jih-Hong; Frey, Harald.; Kervalishvili, Guram; Huang, Tao; Cao, Xue; Pi, Gilbert; Ridley, Aaron;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2014

YEAR: 2014     DOI: 10.1002/2014JA019951

air upwelling; field-aligned currents; radial interplanetary magnetic field

Developing a Multi-Element Geospace Investigation to Understand the Impact of Hemispheric Assymetry

Paxton, Larry; Newell, Patrick; Stromme, Anja; Ridley, Aaron; Kozyra, Janet; Mitchell, Elizabeth;

Published by:       Published on:

YEAR: 2014     DOI:

Understanding Hemispheric Asymmetry and Space Weather I Posters

Paxton, Larry; Newell, Patrick; Stromme, Anja; Ridley, Aaron;

Published by:       Published on:

YEAR: 2014     DOI:

2012

Comparison of Joule heating associated with high-speed solar wind between different models and observations

Huang, Yanshi; Deng, Yue; Lei, Jiuhou; Ridley, Aaron; Lopez, Ramon; Allen, Robert; Butler, Brandon;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: Jan-02-2012

YEAR: 2012     DOI: 10.1016/j.jastp.2011.05.013

Analyzing the hemispheric asymmetry in the thermospheric density response to geomagnetic storms

The thermospheric densities derived by CHAMP/STAR accelerometer within the time period from 01 May 2001 to 31 December 2007 are utilized to investigate the hemispheric asymmetry in response to strong storm driving conditions. The geomagnetic storms of 03\textendash07 April 2004 are first studied since the storms occurred close to the vernal equinox, allowing the seasonal asymmetry to be eliminated to the greatest extent. The averaged density enhancements in the southern polar region were much larger than that in the northern polar region. The comparisons of density versus Dst and Apindex indicate a strong linear dependence with the slopes of the fitted lines in the southern hemisphere being 50\% greater than that in the northern hemisphere. This effect can possibly be attributed to the non-symmetric geomagnetic field. 102 storm events are used to conduct a statistical analysis. For each storm, a linear fit is made between the averaged mass density and theDst and Ap indices independently in each hemisphere. The seasonal variation of the intercepts and the slopes of the fitted lines are further explored. The baseline is strongly dependent on season, with the hemisphere receiving the larger amount of sunlight having larger density. The slopes showed considerable hemispheric differences around the vernal equinox yet no statistical differences around other seasons. It is speculated that competing mechanisms cancel each other during the solstices, while during the equinoxes, the lower magnetic field in the southern hemisphere may allow stronger ion flows, thereby causing more Joule heating. It is uncertain why the vernal equinox would be favored in this explanation though.

Ercha, A.; Ridley, Aaron; Zhang, Donghe; Xiao, Zuo;

Published by: Journal of Geophysical Research      Published on: 08/2012

YEAR: 2012     DOI: 10.1029/2011JA017259

Geomagnetic storms; hemispheric asymmetry; thermospheric density

Importance of capturing heliospheric variability for studies of thermospheric vertical winds

Using the Global Ionosphere Thermosphere Model with observed real-time heliospheric input data, the magnitude and variability of thermospheric neutral vertical winds are investigated. In order to determine the role of variability in the Interplanetary Magnetic Field (IMF) and solar wind density on the neutral wind variability, the heliospheric input data are smoothed. The effects of smoothing the IMF and solar wind and density on the vertical winds are simulated for the cases of no smoothing, 5-minute, and 12-minute smoothing. Various vertical wind acceleration terms, such as the nonhydrostatic acceleration, are quantified. Polar stereographic projections of the variabilities of vertical wind and ion flows are compared to highlight existing correlations. Overall, the smoother, that is, the less variable the IMF and solar wind parameters are, the weaker are the magnitude and the variability of the thermospheric vertical winds. Weaker IMF variability leads to smaller variability in ion flows, which in turn negatively impacts the variability and the magnitude of Joule heating. Small-scale temporal variation of the vertical wind acceleration, and thus the variability of the vertical wind, is dominated by the nonhydrostatic term that is controlled primarily by the temporal variation of the Joule heating, which in turn is related to ion flow variations that are shaped by the IMF in the high-latitude thermosphere. Wavelet analysis of the vertical wind data shows that gravity waves of \~5 and \~10-minute periods are more prominent when the model is run with high-resolution real-time IMF and solar wind data. Better capturing of the temporal variation of the IMF and solar wind parameters is crucial for modeling the variability and magnitude of thermospheric vertical winds.

Erdal, Yi\u; Ridley, Aaron; Moldwin, Mark;

Published by: Journal of Geophysical Research      Published on: 07/2012

YEAR: 2012     DOI: 10.1029/2012JA017596

gravity waves; interplanetary magnetic field; Joule heating; magnetosphere-ionosphere-thermosphere coupling; nonhydrostatic general circulation model; vertical wind variability

Parameterization of the ion convection and the auroral oval in the NCAR thermospheric general circulation models

Emery, B; Roble, Raymond; Ridley, Cicely; Richmond, Arthur; Knipp, Delores; Crowley, Geoff; Evans, David; Rich, Frederick; Maeda, Sawako;

Published by: NCAR Tech. Note NCAR/TN-491+ STR      Published on:

YEAR: 2012     DOI:

2011

Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005

Deng, Yue; Huang, Yanshi; Lei, Jiuhou; Ridley, Aaron; Lopez, Ramon; Thayer, Jeffrey;

Published by: Journal of Geophysical Research      Published on: Jan-01-2011

YEAR: 2011     DOI: 10.1029/2010JA016201

The Community-based Whole Magnetosphere Model

The main goals of the Community-based Whole Magnetosphere Model CWMM project were to 1. Add more models to the Space Weather Modeling Framework SWMF, including a

Ridley, Aaron;

Published by:       Published on:

YEAR: 2011     DOI:

2010

LWS FST: Determine and Quantify the Responses of Atmospheric/Ionospheric Composition and Temperature to Solar XUV Spectral Variability and Energetic Particles

Talaat, Elsayed; Fuller-Rowell, Tim; Qian, Liying; Richards, Phil; Ridley, Aaron; Burns, Alan; Bernstein, Dennis; Chamberlin, Phillip; Fedrizzi, Mariangel; Hsieh, Syau-Yun; , others;

Published by: 38th COSPAR Scientific Assembly      Published on:

YEAR: 2010     DOI:

The Armada mission: Determining the dynamic and spatial response of the thermosphere/ionosphere system to energy inputs on global and regional scales

Ridley, AJ; Forbes, JM; Cutler, J; Nicholas, AC; Thayer, JP; Fuller-Rowell, TJ; Matsuo, T; Bristow, WA; Conde, MG; Drob, DP; , others;

Published by:       Published on:

YEAR: 2010     DOI:

2008

Global model comparison with Millstone Hill during September 2005

A direct comparison between simulation results from the Global Ionosphere Thermosphere Model (GITM) and measurements from the Millstone Hill incoherent scatter radar (ISR) during the month of September 2005 is presented. Electron density, electron temperature, and ion temperature results are compared at two altitudes where ISR data is the most abundant. The model results are produced, first using GITM running in one dimension, which allows comparison at the Millstone Hill location throughout the entire month. The model results have errors ranging from 20\% to 50\% over the course of the month. In addition, the F2 peak electron density (NmF2) and height of the peak (HmF2) are compared for the month. On average the model indicates higher peak electron densities as well as a higher HmF2. During the time period from 9 September through 13 September, the trends in the data are different than the trends in the model results. These differences are due to active solar and geomagnetic conditions during this time period. Three-dimensional (3-D) GITM results are presented during these active conditions, and it is found that the 3-D model results replicate the trends in the data more closely. GITM is able to capture the positive storm phase that occurred late on 10 September but has the most difficulty capturing the density depletion on 11 and 12 September that is seen in the data. This is probably a result of the use of statistical high-latitude and solar drivers that are not as accurate during storm time.

Pawlowski, David; Ridley, Aaron; Kim, Insung; Bernstein, Dennis;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI: https://doi.org/10.1029/2007JA012390

Ionosphere; model; incoherent scatter radar

2007

The Response of the Thermosphere and Ionosphere to Magnetospheric Inputs as Determined from LEO UV Remote Sensing Measurements-Model/Data Comparisons

Paxton, LJ; Zhang, Y; Ridley, A; Christensen, A; DeMajistre, R; Schaefer, R; Morrison, D;

Published by:       Published on:

YEAR: 2007     DOI:

Neutral Wind Dynamics Measured Near the Poker Flat ISR Facility

Hedden, RB; Meriwether, JW; Ridley, AJ;

Published by:       Published on:

YEAR: 2007     DOI:

Global inventory of precipitating populations during the 15-30 January 2005 long-duration flares and magnetic storms: Relative efficacy at ozone destruction

Kozyra, JU; Cattell, CA; Clilverd, M; Evans, DS; Kavanagh, A; Liemohn, MW; Mende, SB; Paxton, LJ; Ridley, A; Soraas, F;

Published by:       Published on:

YEAR: 2007     DOI:

2006

Developing cyber-infrastructure for addressing grand challenge questions in Sun-Earth system science: First results of a testbed worldwide online conference series

Kozyra, JU; Barnes, R; Fox, NJ; Fox, PA; Kuznetsova, MM; Morrison, D; Pallamraju, D; , Papitashvili; Ridley, A; Talaat, ER; , others;

Published by:       Published on:

YEAR: 2006     DOI:

2005

Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm

Liemohn, Michael; Ridley, Aaron; Brandt, Pontus; Gallagher, Dennis; Kozyra, Janet; Ober, Daniel; Mitchell, Donald; Roelof, Edmond; DeMajistre, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2005     DOI:

2004

Conductance Effects on Inner Magnetospheric Plasma Morphology: Model Comparisons With IMAGE EUV, MENA, and HENA Data

Liemohn, MW; Ridley, AJ; Kozyra, JU; Gallagher, DL; Henderson, MG; Denton, MH; Jahn, J; Roelof, EC; DeMajistre, R; Mitchell, DG; , others;

Published by:       Published on:

YEAR: 2004     DOI:

The Global Ionosphere Thermosphere Model results of the April 2002 storm

Ridley, AJ; oth, G; Deng, Y; Kozyra, J; Immel, T; Paxton, L;

Published by:       Published on:

YEAR: 2004     DOI:

2002

Construction of a particle climatology for the study of the effects of solar particle fluxes on the atmosphere

, Sharber; Winningham, JD; Frahm, RA; Crowley, G; Ridley, AJ; Link, R;

Published by: Advances in Space Research      Published on:

YEAR: 2002     DOI:

CEDAR 2018

Malhotra, Garima; Ridley, Aaron; Marsh, Daniel; Wu, Chen; Paxton, Larry;

Published by:       Published on:

YEAR: 2002     DOI:



  1