Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

Deducing Non-Migrating Diurnal Tides in the Middle Thermosphere With GOLD Observations of the Earth's far Ultraviolet Dayglow From Geostationary Orbit

The global-scale observations of the limb and disk (GOLD) Mission images middle thermosphere temperature and the vertical column density ratio of oxygen to molecular nitrogen (O/N2) using its far ultraviolet imaging spectrographs in geostationary orbit. Since GOLD only measures these quantities during daylight, and only over the ∼140° of longitude visible from geostationary orbit, previously developed tidal analysis techniques cannot be applied to the GOLD data set. This paper presents a novel approach that deduces two specified non-migrating diurnal tides using simultaneous measurements of temperature and O/N2. DE3 (diurnal eastward propagating wave 3) and DE2 (diurnal eastward propagating wave 2) during October 2018 and January 2020 are the focus of this paper. Sensitivity analyses using TIE-GCM simulations reveal that our approach reliably retrieves the true phases, whereas a combination of residual contributions from secondary tides, the restriction in longitude, and random uncertainty can lead to ∼50\% error in the retrieved amplitudes. Application of our approach to GOLD data during these time periods provides the first observations of non-migrating diurnal tides in measurements taken from geostationary orbit. We identify discrepancies between GOLD observations and TIE-GCM modeling. Retrieved tidal amplitudes from GOLD observations exceed their respective TIE-GCM amplitudes by a factor of two in some cases.

Krier, Christopher; England, Scott; Greer, Katelynn; Evans, Scott; Burns, Alan; Eastes, Richard;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029563

airglow; composition; temperature; thermosphere; tides

2008

Tidal variability in the ionospheric dynamo region

The seasonal and interannual variability of migrating (Sun-synchronous) and nonmigrating solar atmospheric tides at altitudes between 100 and 116 km are investigated using temperature measurements made with the SABER instrument on the TIMED spacecraft during 2002–2006. Quasi-biennial variations of order ±10–15\% in migrating diurnal and semidiurnal tidal amplitudes are found, presumably due to modulation by the quasi-biennial oscillation (QBO) as the tides propagate from their troposphere and stratospheric sources to the lower thermosphere. A number of nonmigrating tidal components are found that have the potential to produce significant longitudinal variability of the total tidal fields. The most prominent of these, i.e., those that appear at amplitudes of order 5–10 K in a 5-year mean climatology, include the zonally symmetric (s = 0) diurnal tide (D0); the eastward propagating diurnal and semidiurnal tides with zonal wave numbers s = −2 (DE2 and SE2) and s = −3 (DE3 and SE3); and the following westward propagating waves: diurnal s = 2 (DW2); semidiurnal s = 1 (SW1), s = 3 (SW3), and s = 4 (SW4); and terdiurnal s = 5 (TW5). These waves can be plausibly accounted for by nonlinear interaction between migrating tidal components and stationary planetary waves with s = 1 or s = 2 or by longitudinal variations of tropospheric thermal forcing. Additional waves that occur during some years or undergo phase cancellation within construction of a 5-year climatology include DW5, SE1, SE4, SW6, TE1, TW1, and TW7. It is anticipated that the winds that accompany all of these waves in the 100–170 km region will impose longitudinal variability in the electric fields produced through the ionospheric dynamo mechanism, thereby modulating vertical motion of the equatorial ionosphere and the concomitant plasma densities. In addition to the wave-4 modulation of the equatorial ionosphere that has recently been discovered and replicated in modeling studies, the waves revealed here will generate wave-1 (SW1, SW3, D0, DW2), wave-2 (SW4, TW1), wave-3 (DE2, SE1), wave-4 (DE3, SE2, DW5, SW6, TE1, TW7), wave-5 (SE3), and wave-6 (SE4) components of this ionospheric variability, depending on year and time of year. However, the absolute and relative efficiencies with which these waves produce electric fields remains to be determined.

Forbes, J.; Zhang, X.; Palo, S.; Russell, J.; Mertens, C.; Mlynczak, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI: https://doi.org/10.1029/2007JA012737

tides; dynamo; Ionosphere



  1