Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 97 entries in the Bibliography.


Showing entries from 1 through 50


2022

Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme

In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (\textless 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus.

Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro;

Published by: Experimental Astronomy      Published on: mar

YEAR: 2022     DOI: 10.1007/s10686-022-09846-9

Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050

Optomechanical design of a wide-field auroral imager on Fengyun-3D

We present the optomechanical design and development of a wide-field auroral imager (WAI) on board the satellite Fengyun-3D. The optomechanical system of the WAI features a combination of a large field of view and a single-axis scanning mechanism. The combination makes the WAI perform better than its counterparts in temporal resolution in a low Earth orbit. In-orbit tests have verified the survival of WAI in the launching vibration and space environment. It has functioned on-orbit since 2018, with a spatial resolution of ∼10km at the nadir point, at a reference height of 110 km above the ionosphere.

Guo, Quanfeng; Chen, Bo; Liu, ShiJie; Song, KeFei; He, LingPing; He, Fei; Zhao, Weiguo; Wang, Zhongsu; Chen, Liheng; Shi, Guangwei;

Published by: Applied Optics      Published on: apr

YEAR: 2022     DOI: 10.1364/AO.453949

Optomechanical design of a wide-field auroral imager on Fengyun-3D

We present the optomechanical design and development of a wide-field auroral imager (WAI) on board the satellite Fengyun-3D. The optomechanical system of the WAI features a combination of a large field of view and a single-axis scanning mechanism. The combination makes the WAI perform better than its counterparts in temporal resolution in a low Earth orbit. In-orbit tests have verified the survival of WAI in the launching vibration and space environment. It has functioned on-orbit since 2018, with a spatial resolution of ∼10km at the nadir point, at a reference height of 110 km above the ionosphere.

Guo, Quanfeng; Chen, Bo; Liu, ShiJie; Song, KeFei; He, LingPing; He, Fei; Zhao, Weiguo; Wang, Zhongsu; Chen, Liheng; Shi, Guangwei;

Published by: Applied Optics      Published on: apr

YEAR: 2022     DOI: 10.1364/AO.453949

Validation of in-situ ionospheric density using FORMOSAT-7/COSMIC-2 IVM and ICON IVM

We investigate the validation of in-situ ion density measurements by the ion velocity meter (IVM) onboard F7/C2 and ICON, respectively, during the solar minimum condition of

Choi, Jong-Min; Lin, Charles; Rajesh, PK; Park, Jaeheung; Kwak, Young-Sil; Chen, Shih-Ping; Lin, Jia-Ting;

Published by:       Published on:

YEAR: 2022     DOI: 10.21203/rs.3.rs-1758637/v1

Extreme Enhancements of Electron Temperature in Low Latitude Topside Ionosphere During the October 2016 Storm

We use the in-situ observations of DMSP and SWARM satellites to report the changes of the topside ionospheric electron temperature during the October 2016 storm. Electron temperature in the afternoon sector dramatically increases in low latitudes in the recovery phase of the storm. Furthermore, the temperature enhancements have an obvious dependence on longitude and are mainly centralized around 100°–150°E in different satellite observations. The temperature enhancements attain more than 2,000 K at 840 km and 1,500 K at 450 km around the magnetic equator. The decrease in the electron-ion collision cooling rate, resulting from the lessened topside electron density, could not fully explain the temperature enhancement. At the same time, the electron densities in crests of the equatorial ionization anomaly are suppressed drastically at 100°–150°E, which cause a less heat conduction effect from the equatorial topside ionosphere to low altitudes via magnetic field lines and heat the topside ionospheric electron temperature. Further analysis indicates that dayside westward disturbance dynamo electric field presents a significant longitude structure and is a primary driver for the topside ionospheric temperature enhancement during the storm.

Zhang, Ruilong; Liu, Libo; Ma, Han; Chen, Yiding; Le, Huijun; Yoshikawa, Akimasa;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030278

electron temperature; equatorial topisde; Ionospheric storm; vertical drift

Observation of the ionosphere by ionosondes in the Southern and Northern hemispheres during geospace events in October 2021

The thermospheric O/N2 ratio obtained from the TIMED/GUVI instrument for TIMED/GUVI observations of the O/N The authors ack nowledge the Global Ultraviolet Imager (GUVI) for the

Reznychenko, M; Bogomaz, O; Kotov, D; Zhivolup, T; Koloskov, O; , Lisachenko;

Published by: Ukrainian Antarctic Journal      Published on:

YEAR: 2022     DOI: 10.33275/1727-7485.1.2022.686

Retrospect and prospect of ionospheric weather observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2

FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006

Liu, Tiger; Lin, Charles; Lin, Chi-Yen; Lee, I-Te; Sun, Yang-Yi; Chen, Shih-Ping; Chang, Fu-Yuan; Rajesh, Panthalingal; Hsu, Chih-Ting; Matsuo, Tomoko; , others;

Published by: Terrestrial, Atmospheric and Oceanic Sciences      Published on:

YEAR: 2022     DOI: 10.1007/s44195-022-00019-x

2021

The distribution characteristics of GPS cycle slip over the China mainland and adjacent region during the declining solar activity (2015--2018) period of solar cycle 24

The Global Positioning System (GPS) cycle slip has a marked impact on the application of communication and navigation systems and therefore is one of the main concerns of the user and designer of terminal systems. In this study, we analyzed the temporal and spatial characteristics of cycle slip events using the GPS data detected from 260 observations in the China sector during the period of the year 2015–2018. The results show that the temporal variations of cycle slips are dependent on the local time, seasons, and solar activity. It occurs from 20:00 LT to midnight and more frequently in the equinox months, especially in solar maximum years. The spatial distribution occurs mainly at southern sector below 25°N, which should be associated with the solar condition and ionospheric irregularities in the equatorial region, and the case analyses reveal that the variation of cycle slips has a similar tendency with the ionospheric scintillation monitored at low-latitude station Guangzhou explaining this relationship. Our results reflect the performance of the GPS signals monitored in the China area during the declining period of solar activity to some degree.

Geng, Wei; Huang, Wengeng; Liu, Guoqi; Liu, Siqing; Luo, Binxian; Chen, Yanhong;

Published by: Radio Science      Published on: may

YEAR: 2021     DOI: 10.1029/2020RS007196

Monitoring; Delays; Global positioning system; Indexes; Receivers; Satellite broadcasting; Signal to noise ratio

Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations

We present a joint analysis of longitude-temporal variations of ionospheric and geomagnetic parameters at middle and high latitudes in the Northern Hemisphere during the two severe magnetic storms in March and June 2015 by using data from the chains of magnetometers, ionosondes and GPS/GLONASS receivers. We identify the fixed longitudinal zones where the variability of the magnetic field is consistently high or low under quiet and disturbed geomagnetic conditions. The revealed longitudinal structure of the geomagnetic field variability in quiet geomagnetic conditions is caused by the discrepancy of the geographic and magnetic poles and by the spatial anomalies of different scales in the main magnetic field of the Earth. Variations of ionospheric parameters are shown to exhibit a pronounced longitudinal inhomogeneity with changing geomagnetic conditions. This inhomogeneity is associated with the longitudinal features of background and disturbed structure of the geomagnetic field. During the recovery phase of a storm, important role in dynamics of the mid-latitude ionosphere may belong to wave-like thermospheric disturbances of molecular gas, propagating westward for several days. Therefore, it is necessary to extend the time interval for studying the ionospheric effects of strong magnetic storms by a few days after the end of the magnetospheric source influence, while the disturbed regions in the thermosphere continues moving westward and causes the electron density decrease along the trajectories of propagation.

Chernigovskaya, M.; Shpynev, B.; Yasyukevich, A.; Khabituev, D.; Ratovsky, K.; Belinskaya, Yu.; Stepanov, A.; Bychkov, V.; Grigorieva, S.; Panchenko, V.; Kouba, D.; Mielich, J.;

Published by: Advances in Space Research      Published on: jan

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.028

Chain of GPS/GLONASS receivers; Geomagnetic field variations; geomagnetic storm; Ionosonde chain; ionospheric disturbances

A ROTI-Aided Equatorial Plasma Bubbles Detection Method

In this study, we present a Rate of Total Electron Content Index (ROTI)-aided equatorial plasma bubbles (EPBs) detection method based on a Global Navigation Satellite System (GNSS) ionospheric Total Electron Content (TEC). This technique seeks the EPBs occurrence time according to the ROTI values and then extracts the detrended ionospheric TEC series, which include EPBs signals using a low-order, partial polynomial fitting strategy. The EPBs over the Hong Kong area during the year of 2014 were detected using this technique. The results show that the temporal distribution and occurrence of EPBs over the Hong Kong area are consistent with that of previous reports, and most of the TEC depletion error is smaller than 1.5 TECU (average is 0.63 TECU), suggesting that the detection method is feasible and highly accurate. Furthermore, this technique can extract the TEC depletion series more effectively, especially for those with a long duration, compared to previous method.

Tang, Long; Louis, Osei-Poku; Chen, Wu; Chen, Mingli;

Published by: Remote Sensing      Published on: jan

YEAR: 2021     DOI: 10.3390/rs13214356

Ionosphere; detection method; equatorial plasma bubbles; GNSS; ROTI

A ROTI-Aided Equatorial Plasma Bubbles Detection Method

In this study, we present a Rate of Total Electron Content Index (ROTI)-aided equatorial plasma bubbles (EPBs) detection method based on a Global Navigation Satellite System (GNSS) ionospheric Total Electron Content (TEC). This technique seeks the EPBs occurrence time according to the ROTI values and then extracts the detrended ionospheric TEC series, which include EPBs signals using a low-order, partial polynomial fitting strategy. The EPBs over the Hong Kong area during the year of 2014 were detected using this technique. The results show that the temporal distribution and occurrence of EPBs over the Hong Kong area are consistent with that of previous reports, and most of the TEC depletion error is smaller than 1.5 TECU (average is 0.63 TECU), suggesting that the detection method is feasible and highly accurate. Furthermore, this technique can extract the TEC depletion series more effectively, especially for those with a long duration, compared to previous method.

Tang, Long; Louis, Osei-Poku; Chen, Wu; Chen, Mingli;

Published by: Remote Sensing      Published on: jan

YEAR: 2021     DOI: 10.3390/rs13214356

Ionosphere; detection method; equatorial plasma bubbles; GNSS; ROTI

Wide-field aurora imager onboard Fengyun satellite: Data products and validation

New observations of auroras based on the wide-field aurora imager (WAI) onboard Fengyun-3D (FY-3D) satellite are exhibited in this paper. Validity of the WAI data is analyzed by comparing auroral boundaries derived from WAI observations with results obtained from data collected by the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) aboard the Defense Meteorological Satellite Program (DMSP F18). Dynamic variations of the aurora with the solar wind, interplanetary magnetic field (IMF) parameters, and the SYM-H index are also investigated. The comparison of auroral boundaries indicates that the WAI data are morphologically valid and suitable to the study of auroral dynamics. Effective responses to solar wind parameters indicate that the WAI data can be useful to monitor and predict the Earth s space weather. Since the configuration of aurora is a good indicator of the solar wind-magnetosphere-ionosphere (SW-M-I) coupling system, and can reflect the disturbance of the space environment, the WAI will provide important data to help us to study the physical processes in space.

Ding, GuangXing; Li, JiaWei; Zhang, Xiaoxin; He, Fei; He, LingPing; Song, KeFei; Sun, Liang; Dai, Shuang; Liu, ShiJie; Chen, Bo; Yu, Chao; Hu, Xiuqing; Gu, SongYan; Yang, Zhongdong; Zhang, Peng;

Published by: Earth and Planetary Physics      Published on:

YEAR: 2021     DOI: 10.26464/epp2021003

auroral dynamics; FY-3D; SSUSI; SW-M-I; WAI

Near Real-Time Global Plasma Irregularity Monitoring by FORMOSAT-7/COSMIC-2

This study presents initial results of the ionospheric scintillation in the F layer using the S4 index derived from the radio occultation experiment (RO-S4) on FORMOSAT-7/COSMIC-2 (F7/C2). With the sufficiently dense RO-S4 observations at low latitudes, it is possible to construct hourly, global scintillation maps to monitor equatorial plasma bubbles (EPBs). The preliminary F7/C2 RO-S4 during August 2019 to April 2020 show clear scintillation distributions around American and the Atlantic Ocean longitudes. The RO-S4 near Jicamarca are compared with range-time-intensity (RTI) maps of the 50 MHz radar, and the results show that the occurrence of intense RO-S4 in the range 0.125–0.5 are co-located with the bottomside of the spread-F patterns. Increases in RO-S4 at the upward phase of bottom-side oscillations is theoretically consistent with large-scale wave seeding of the EPBs. The locations and occurrences of the RO-S4 greater than 0.5 are consistent with airglows depletions from the NASA GOLD mission. Climatology analyses show that monthly occurrences of RO-S4 \textgreater 0.5 agree well with the monthly EPB occurrences in GOLD 135.6 nm image, and show a similar longitudinal distribution to that of DMSP and C/NOFS in-situ measurements. The results suggest that the RO-S4 intensities can be utilized to identify EPBs of specific scales.

Chen, Shih-Ping; Lin, Charles; Rajesh, Panthalingal; Liu, Jann-Yenq; Eastes, Richard; Chou, Min-Yang; Choi, Jong-Min;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028339

equatorial plasma bubbles; FORMOSAT-7/COSMIC-2; global observation of limb and disk; GNSS scintillation; radio occultation; S4 index

First Look at a Geomagnetic Storm With Santa Maria Digisonde Data: F Region Responses and Comparisons Over the American Sector

Santa Maria Digisonde data are used for the first time to investigate the F region behavior during a geomagnetic storm. The August 25, 2018 storm is considered complex due to the incidence of two Interplanetary Coronal Mass Ejections and a High-Speed Solar Wind Stream (HSS). The F 2 layer critical frequency (f o F 2) and its peak height (h m F 2) collected over Santa Maria, near the center of the South American Magnetic Anomaly (SAMA), are compared with data collected from Digisondes installed in the Northern (NH) and Southern (SH) Hemispheres in the American sector. The deviation of f o F 2 (Df o F 2) and h m F 2 (Dh m F 2) are used to quantify the ionospheric storm effects. Different F region responses were observed during the main phase (August 25–26), which is attributed to the traveling ionospheric disturbances and disturbed eastward electric field during nighttime. The F region responses became highly asymmetric between the NH and SH at the early recovery phase (RP, August 26) due to a combination of physical mechanisms. The observed asymmetries are interpreted as caused by modifications in the thermospheric composition and a rapid electrodynamic mechanism. The persistent enhanced thermospheric [O]/[N2] ratio observed from August 27 to 29 combined with the increased solar wind speed induced by the HSS and IMF B z fluctuations seem to be effective in causing the positive ionospheric storm effects and the shift of the Equatorial Ionization Anomaly crest to higher than typical latitudes. Consequently, the most dramatic positive ionospheric storm during the RP occurred over Santa Maria (∼120\%).

Moro, J.; Xu, J.; Denardini, C.; Resende, L.; Neto, P.; Da Silva, L.; Silva, R.; Chen, S.; Picanço, G.; Carmo, C.; Liu, Z.; Yan, C.; Wang, C.; Schuch, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028663

Digisonde; Equatorial ionization anomaly; F-region; Ionospheric storm; SAMA; space weather

Extreme Positive Ionosphere Storm Triggered by a Minor Magnetic Storm in Deep Solar Minimum Revealed by FORMOSAT-7/COSMIC-2 and GNSS Observations

This study examines an unexpected and extreme positive ionospheric response to a minor magnetic storm on August 5, 2019 by using global ionosphere specification (GIS) 3D electron density profiles obtained by assimilating radio occultation total electron content (TEC) measurements of the recently launched FORMOSAT-7/COSMIC-2 satellites, and ground-based global navigation satellite system (GNSS) TEC. The results reveal ∼300\% enhancement of equatorial ionization anomaly (EIA) crests, appearing over 200–300 km altitudes, and a much intense localized density enhancement over the European sector. These are the most intense ionospheric response that has ever been detected for a small magnetic storm with Dst ∼ −53 nT (SYM-H ∼ −64 nT). The enhancements are validated by using global ionosphere map (GIM) TEC and ground-based GNSS TEC. The GIS vertical electron density structures during the storm are examined to understand the physical processes giving rise to such an intense ionosphere response during deep solar minimum conditions when the background electron density is very low. Altitude variations and poleward shifts of the locations of the EIA crests indicate that prompt penetration electric fields (PPEF) play an important role in producing the observed positive storm responses, with the storm-induced equatorward circulation supporting the plasma accumulation against recombination losses. Additional physical mechanisms are required to fully explain the unexpected electron density enhancements for this minor storm event.

Rajesh, P.; Lin, C.; . Y. Lin, C; Chen, C.; . Y. Liu, J; Matsuo, T.; Chen, S.; Yeh, W.; . Y. Huang, C;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028261

FORMOSAT-7/COSMIC-2; Global Ionospheric Specification; ionospheric data assimilation; ionospheric response to magnetic storm; magnetosphere-ionosphere coupling; minor magnetic storm

Extreme Positive Ionosphere Storm Triggered by a Minor Magnetic Storm in Deep Solar Minimum Revealed by FORMOSAT-7/COSMIC-2 and GNSS Observations

This study examines an unexpected and extreme positive ionospheric response to a minor magnetic storm on August 5, 2019 by using global ionosphere specification (GIS) 3D electron density profiles obtained by assimilating radio occultation total electron content (TEC) measurements of the recently launched FORMOSAT-7/COSMIC-2 satellites, and ground-based global navigation satellite system (GNSS) TEC. The results reveal ∼300\% enhancement of equatorial ionization anomaly (EIA) crests, appearing over 200–300 km altitudes, and a much intense localized density enhancement over the European sector. These are the most intense ionospheric response that has ever been detected for a small magnetic storm with Dst ∼ −53 nT (SYM-H ∼ −64 nT). The enhancements are validated by using global ionosphere map (GIM) TEC and ground-based GNSS TEC. The GIS vertical electron density structures during the storm are examined to understand the physical processes giving rise to such an intense ionosphere response during deep solar minimum conditions when the background electron density is very low. Altitude variations and poleward shifts of the locations of the EIA crests indicate that prompt penetration electric fields (PPEF) play an important role in producing the observed positive storm responses, with the storm-induced equatorward circulation supporting the plasma accumulation against recombination losses. Additional physical mechanisms are required to fully explain the unexpected electron density enhancements for this minor storm event.

Rajesh, P.; Lin, C.; . Y. Lin, C; Chen, C.; . Y. Liu, J; Matsuo, T.; Chen, S.; Yeh, W.; . Y. Huang, C;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028261

FORMOSAT-7/COSMIC-2; Global Ionospheric Specification; ionospheric data assimilation; ionospheric response to magnetic storm; magnetosphere-ionosphere coupling; minor magnetic storm

Modeling of Ultraviolet Aurora Intensity Associated With Interplanetary and Geomagnetic Parameters Based on Neural Networks

The spatial distribution of aurora intensity is an important manifestation of solar wind-magnetosphere-ionosphere energy coupling process, and it oscillates with the change of space environment parameters and geomagnetic index. It is of great significance to establish an appropriate aurora intensity model for the prediction of space weather and the study of magnetosphere dynamics. Based on Ultraviolet Imager (UVI) data of Polar satellite, we constructed two auroral models by using two different neural networks, that is, the generalized regression neural network (GRNN), and the conditional generation adversarial network (CGAN). Input parameters of the models include interplanetary magnetic field, solar wind velocity and density, and the geomagnetic AE index. Output result is the spatial distribution of auroral intensity in altitude adjusted corrected geomagnetic (AACGM) coordinates. The structural similarity index (SSIM) of image quality is used as an evaluation standard of detail similarity between the prediction results of auroral intensity model and corresponding UVI images (complete similarity is 1, dissimilarity is 0, SSIM is generally considered to have good similarity if it is greater than 0.5). Based on the respective training datasets of GRNN and CGAN models, the evaluating results showed that the mean values (standard deviation) of SSIM were 0.5409 (0.0912) and 0.5876 (0.0712), respectively, so the prediction results from both models can restore the auroral intensity distribution of the original images of UVI. In addition, the value of SSIM can increase with the increase of the number of training data. Therefore, more training data will help improve the effectiveness of these models.

Hu, Ze-Jun; Han, Bing; Zhang, Yisheng; Lian, Huifang; Wang, Ping; Li, Guojun; Li, Bin; Chen, Xiang-Cai; Liu, Jian-Jun;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2021SW002751

conditional generation adversarial network; generalized regression neural network; interplanetary and geomagnetic parameters; neural networks; ultraviolet auroral intensity model

Impact of Storm-Enhanced Density (SED) on Ion Upflow Fluxes During Geomagnetic Storm

The impact of the dynamic evolution of the Storm-Enhanced Density (SED) on the upward ion fluxes during the March 06, 2016 geomagnetic storm is studied using comprehensive multi-scale datasets. This storm was powered by a Corotating Interaction Region (CIR), and the minimum Sym-H reached ∼−110 nT. During the ionospheric positive storm phase, the SED formed and the associated plume and polar cap patches occasionally drifted anti-sunward across the polar cap. When these high-density structures encountered positive vertical flows, large ion upward fluxes were produced, with the largest upward flux reaching 3 × 1014 m−2s−1. These upflows were either the type-1 ion upflow associated with fast flow channels, such as the subauroral polarization stream (SAPS) channel, or the type-2 ion upflow due to soft particle precipitations in the cusp region. The total SED-associated upflow flux in the dayside cusp can be comparable to the total upflow flux in the nightside auroral zone despite the much smaller cusp area compared with the auroral zone. During the ionospheric negative storm phase, the ionospheric densities within the SED and plume decreased significantly and thus led to largely reduced upward fluxes. This event analysis demonstrates the critical role of the ionospheric high-density structures in creating large ion upward fluxes. It also suggests that the dynamic processes in the coupled ionosphere-thermosphere system and the resulting state of the ionospheric storm are crucial for understanding the temporal and spatial variations of ion upflow fluxes and thus should be incorporated into coupled geospace models for improving our holistic understanding of the role of ionospheric plasma in the geospace system.

Zou, Shasha; Ren, Jiaen; Wang, Zihan; Sun, Hu; Chen, Yang;

Published by: Frontiers in Astronomy and Space Sciences      Published on:

YEAR: 2021     DOI:

Global Effects of a Polar Solar Eclipse on the Coupled Magnetosphere-Ionosphere System

It is well-known that solar eclipses can significantly impact the ionosphere and thermosphere, but how an eclipse influences the magnetosphere-ionosphere system is still unknown. Using a coupled magnetosphere-ionosphere-thermosphere model, we examined the impact on geospace of the northern polar-region eclipse that occurred on June 10, 2021. The simulations reveal that the eclipse-induced reduction in polar ionospheric conductivity causes large changes in field-aligned current, cross-polar cap potential and auroral activity. While such effects are expected in the northern hemisphere where solar obscuration occurred, they also occurred in the southern hemisphere through electrodynamic coupling. Eclipse-induced changes in monoenergetic auroral precipitation differ significantly between the northern hemisphere and southern hemisphere while diffuse auroral precipitation is interhemispherically symmetric. This study demonstrates that the geospace response to a polar-region solar eclipse is not limited just to the eclipse region but has global implications.

Chen, Xuetao; Dang, Tong; Zhang, Binzheng; Lotko, William; Pham, Kevin; Wang, Wenbin; Lin, Dong; Sorathia, Kareem; Merkin, Viacheslav; Luan, Xiaoli; Dou, Xiankang; Luo, Bingxian; Lei, Jiuhou;

Published by: Geophysical Research Letters      Published on:

YEAR: 2021     DOI: 10.1029/2021GL096471

auroral activity; magnetosphere-ionosphere coupling; polar solar eclipse

Interaction Between an EMSTID and an EPB in the EIA Crest Region Over China

Few observations investigated the interaction between an electrical medium-scale traveling ionospheric disturbance (EMSTID) and an equatorial plasma bubble (EPB). This paper presents another interaction between a southwestward propagating EMSTID and an eastward drifting EPB in the equatorial ionization anomaly (EIA) crest region of China. When the EMSTID and the EPB touched each other, several depletions of the EMSTID (EPB) showed the eastward (westward) velocity disturbances of the EPB (EMSTID) depletions. Besides, phase elongations of the EPB depletions contrarotated as the EMSTID propagated southwestward. However, of important finding is that the interaction of the EMSTID and the EPB could have polarized one depletion of the postmidnight EPB that should have become a fossilized bubble. Inside that polarized EPB depletion were meter-scale irregularities that caused activated radar echoes and enhanced ranged spread F (RSF). The interaction occurred in descending ionosphere and the lower density regions got filled up with an enhanced density plasma. We propose that the EMSTID and the EPB could have electrically coupled with each other, causing an enhanced polarization electric field (PEF) that polarized that EPB depletion; the E × B gradient drift instability (Kelley, 1989) could have caused the meter-scale irregularities when that enhanced PEF was imposed on that reactivated EPB depletion surrounded by that enhanced density plasma. This study provides observational evidence that how an electrical couple of EMSTID and EPB events can activate a postmidnight EPB depletion that should become a fossilized structure.

Sun, Longchang; Xu, JiYao; Zhu, Yajun; Xiong, Chao; Yuan, Wei; Wu, Kun; Hao, Yongqiang; Chen, Gang; Yan, Chunxiao; Wang, Zhihua; Zhao, Xiukuan; Luo, Xiaomin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA029005

airglow; EIA crest region; Interaction between MSTID and EPB; Nighttime plasma density enhancement; Polarization of postmidnight EPB; VHF radar echoes and range spread F

Estimating Precipitating Energy Flux, Average Energy, and Hall Auroral Conductance From THEMIS All-Sky-Imagers With Focus on Mesoscales

Recent attention has been given to mesoscale phenomena across geospace (∼10 s km to 500 km in the ionosphere or ∼0.5 RE to several RE in the magnetosphere), as their contributions to the system global response are important yet remain uncharacterized mostly due to limitations in data resolution and coverage as well as in computational power. As data and models improve, it becomes increasingly valuable to advance understanding of the role of mesoscale phenomena contributions—specifically, in magnetosphere-ionosphere coupling. This paper describes a new method that utilizes the 2D array of Time History of Events and Macroscale Interactions during Substorms (THEMIS) white-light all-sky-imagers (ASI), in conjunction with meridian scanning photometers, to estimate the auroral scale sizes of intense precipitating energy fluxes and the associated Hall conductances. As an example of the technique, we investigated the role of precipitated energy flux and average energy on mesoscales as contrasted to large-scales for two back-to-back substorms, finding that mesoscale aurora contributes up to ∼80\% (∼60\%) of the total energy flux immediately after onset during the early expansion phase of the first (second) substorm, and continues to contribute ∼30–55\% throughout the remainder of the substorm. The average energy estimated from the ASI mosaic field of view also peaked during the initial expansion phase. Using the measured energy flux and tables produced from the Boltzmann Three Constituent (B3C) auroral transport code (Strickland et al., 1976; 1993), we also estimated the 2D Hall conductance and compared it to Poker Flat Incoherent Scatter Radar conductance values, finding good agreement for both discrete and diffuse aurora.

Gabrielse, Christine; Nishimura, Toshi; Chen, Margaret; Hecht, James; Kaeppler, Stephen; Gillies, Megan; Reimer, Ashton; Lyons, Larry; Deng, Yue; Donovan, Eric; Evans, Scott;

Published by: Frontiers in Physics      Published on:

YEAR: 2021     DOI:

2020

A method to derive global O/N2 ratios from SSUSI/DMSP based on Re-AURIC algorithm

Global thermospheric O/N2 column density ratios are obtained using the SSUSI/DMSP far-ultraviolet (FUV) dayglow data and the Re-AURIC simulation results. The Re-AURIC is derived from the AURIC algorithm after some old modules are updated. The calculation processes of O/N2 ratio are then established using the simulations of Re-AURIC to calibrate the ratios of the OI 135.6\ nm emission and N2 LBHS emission from SSUSI observations. The standard deviation (1σ) and correlation coefficient are 0.045 and 0.769 compared with the O/N2 ratios provided by the SSUSI EDR data. The statistical errors between the calculated ratios and the EDR references are generally less than 0.2 with 96.40\% at 2σ (95.44\%) and less than 0.1 with 60.51\% at about 1σ (68.26\%). Two global O/N2 ratio maps are obtained using this method to study its variations when the magnetic storm occurs. The significant O/N2 depletion can be seen in one O/N2 ratio map whose Kp index is 6. Also, the depletion is not uniform at different longitudes and the scales extend from high latitude to low latitude during magnetic storm. This proposed method provides us with a simple and useful tool to obtain the global O/N2 distribution and even the future modeling from the observations on satellites.

Ding, GuangXing; Chen, Bo; Zhang, Xiaoxin; He, Fei;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1016/j.jastp.2020.105196

FUV dayglow; Magnetic storm; O/N2 ratio; Re-AURIC

A case study of isolated auroral spots based on DMSP data

This study employed ultraviolet images and particle data to investigate isolated auroral spots away from the Earth\textquoterights auroral oval. Data from SSUSI (Special Sensor Ultraviolet Spectrographic Imager) and SSJ (Special Sensor J) mounted on the DMSP (Defence Meteorological Satellite Program) spacecraft were examined. The isolated auroral spots were observed by DMSP F16/SSUSI and F17/SSUSI on 29 May 2010 during the recovery phase of a moderate geomagnetic storm with a minimum SYM-H index of -70 nT. The auroral spots were observed between 18:00\textendash21:00 MLT and corotated with the Earth, but stayed almost at the same magnetic latitude (MLAT) of -60\textdegree. It is found that the isolated auroral spots were produced mainly by energetic ring current ions at energies above ~10\ keV. The enhancement in the electron flux with energy below ~200\ eV was also observed for the isolated auroral spots. The MLAT of the electron flux was nearly 2\textdegreehigher than that for the precipitating ions.

Zhou, Su; Chen, Yuqing; Zhang, Jin;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 01/2020

YEAR: 2020     DOI: 10.1016/j.jastp.2019.105176

Isolated auroral spots; Proton aurora; Subauroral electron precipitation

Impacts of Binning Methods on High-Latitude Electrodynamic Forcing: Static Versus Boundary-Oriented Binning Methods

An outstanding issue in the general circulation model simulations for Earth\textquoterights upper atmosphere is the inaccurate estimation of Joule heating, which could be associated with the inaccuracy of empirical models for high-latitude electrodynamic forcing. The binning methods used to develop those empirical models may contribute to the inaccuracy. Traditionally, data are binned through a static binning approach by using fixed geomagnetic coordinates, in which the dynamic nature of the forcing is not considered and therefore the forcing patterns may be significantly smeared. To avoid the smoothing issue, data can be binned according to some physically important boundaries in the high-latitude forcing, that is, through a boundary-oriented binning approach. In this study, we have investigated the sensitivity of high-latitude forcing patterns to the binning methods by applying both static and boundary-oriented binning approaches to the electron precipitation and electric potential data from the Defense Meteorological Satellite Program satellites. For this initial study, we have focused on the moderately strong and dominantly southward interplanetary magnetic field conditions. As compared with the static binning results, the boundary-oriented binning approach can provide a more confined and intense electron precipitation pattern. In addition, the magnitudes of the electric potential and electric field in the boundary-oriented binning results increase near the convection reversal boundary, leading to a ~11\% enhancement of the cross polar cap potential. The forcing patterns obtained from both binning approaches are used to drive the Global Ionosphere and Thermosphere Model to assess the impacts on Joule heating by using different binning patterns. It is found that the hemispheric-integrated Joule heating in the simulation driven by the boundary-oriented binning patterns is 18\% higher than that driven by the static binning patterns.

Zhu, Qingyu; Deng, Yue; Richmond, Arthur; Maute, Astrid; Chen, Yun-Ju; Hairston, Marc; Kilcommons, Liam; Knipp, Delores; Redmon, Robert; Mitchell, Elizabeth;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2020

YEAR: 2020     DOI: 10.1029/2019JA027270

Electric field; high latitude; Joule heating; particle precipitation

Ionospheric parameters in the European sector during the magnetic storm of August 25—26, 2018

Blagoveshchensky, DV; Sergeeva, MA;

Published by: Advances in Space Research      Published on:

YEAR: 2020     DOI:

Ionospheric parameters in the European sector during the magnetic storm of August 25—26, 2018

The GUVI data used here are provided through support from the NASA MO&DA program. The GUVI instrument was designed and built by The Aerospace Corporation and The Johns

Blagoveshchensky, DV; Sergeeva, MA;

Published by: Advances in Space Research      Published on:

YEAR: 2020     DOI: 10.1016/j.asr.2019.07.044

Statistical structure of nighttime O2 aurora from SABER and its dependence on geomagnetic and solar activities in winter

O 2 aurora is one kind of important molecular aurorae that is not fully understood yet. It is hard to be investigated due to the contamination by nightglow. In this work, we studied O 2

Gao, Hong; Xu, JiYao; Chen, Guang-Ming; Zhu, Yajun; Liu, Weijun; Wang, Chi;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: 10.1029/2020JA028302

Assessing the positioning performance under the effects of strong ionospheric anomalies with multi-GNSS in Hong Kong

Global navigation satellite system (GNSS) precise positioning performance will be strongly affected under severe ionospheric anomaly conditions. The combination of multi-GNSS can increase the available observations and improve the geometry of continuously tracked satellites. This paper focuses on assessing the positioning performance with the combination of Global Positioning System (GPS), Global naya Navigatsionnaya Sputnikova Sistema (GLONASS), and BeiDou System (BDS) around the St. Patrick s Day geomagnetic storm (9–18 March) in 2015 in Hong Kong. The rate of total electron content (TEC) index (ROTI) indicates severe ionospheric anomalies before the superstorm, while it was absent during the main phase of the storm in Hong Kong. Furthermore, strong scintillation events on signal-to-noise ratio (SNR) and multipath (MP) observables are observed during ionospheric anomalies period. Then the performance of single-point positioning (SPP) and precise point positioning (PPP) with multi-GNSS is shown. The ionospheric scintillation events may reduce pseudorange accuracy but affect SPP performance a little in this study, while the PPP accuracy is vastly decreased due to the subsequent reconvergence caused by frequent cycle slip (CS). Compared to PPP solutions with GPS only, the accuracy is improved significantly with the combination of multi-GNSS.

Lu, Yangwei; Wang, Zhenjie; Ji, Shengyue; Chen, Wu;

Published by: Radio Science      Published on:

YEAR: 2020     DOI: 10.1029/2019RS007004

2019

Ionospheric parameters in the European sector during the magnetic storm of August 25\textendash26, 2018

Variations of ionospheric parameters Total Electron Content (TEC) by GNSS, critical frequency (foF2) by vertical sounding and electron density (Ne) by low-altitude satellite were studied at high, mid and low latitudes of the European sector during the magnetic storm of August 25\textendash26, 2018. During the main phase of the storm the ionospheric F2-layer was under the positive disturbance at mid and low latitudes. Then the transition from the positive to negative ΔfoF2 values occurred at all latitudes. The recovery phase was characterized by negative ionospheric disturbance at all latitudes. This is due to the decrease of thermospheric O/N2 ratio during the recovery phase of the storm. The intense Es layers screened the reflections from the F2-layer on August 26th at high and at low latitudes but at different times. Some blackouts occurred due to the high absorption level at high latitudes. In general, foF2 and TEC data were highly correlated. The major Ne changes were at the low latitudes. In general, Ne data confirmed the ionospheric dynamics revealed with foF2 and TEC.

Blagoveshchensky, D.V.; Sergeeva, M.A.;

Published by: Advances in Space Research      Published on: 08/2019

YEAR: 2019     DOI: 10.1016/j.asr.2019.07.044

New Aspects of the Ionospheric Behavior Over Millstone Hill During the 30-Day Incoherent Scatter Radar Experiment in October 2002

The geomagnetic storm-driven ionospheric changes and the involved processes are interesting and challenging topics in understanding and predicting the ionosphere. In this study we investigate the response of the ionosphere to geomagnetic disturbances during the 30-day incoherent scatter radar measurements conducted at Millstone Hill (42.6\textdegreeN, 71.5\textdegreeW) from 4 October to 4 November 2002. During geomagnetically disturbed periods, while the peak electron density of the F2 layer (NmF2) and total electron content deviate remarkably from the quiet time ones in a similar way, the incoherent scatter radar measurements reveal that the changes in electron density are frequently different between low and high altitudes. The electron density is significantly depleted at low altitudes; however, at topside it either changes slightly or sometime is enhanced. The enhanced vertical scale height around 600 km under geomagnetically active conditions implies that the topside electron density profiles become much steeper. The increase in the peak height of F2 layer (hmF2) indicates the upward motions under the action of the storm-driven dynamic processes. Further, sometimes strong differences are shown in total electron content between Millstone Hill and longitude 100\textdegreeW. The competing contributions from dynamic processes and disturbance composition to the storm-time ionospheric changes over Millstone Hill are indicated in the different responses in electron density at the bottomside and topside of the ionosphere.

Liu, Libo; Le, Huijun; Chen, Yiding; Zhang, Ruilong; Wan, Weixing; Zhang, Shun-Rong;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026806

Wide-field auroral imager onboard the Fengyun satellite

The newly launched Fengyun-3D (FY-3D) satellite carried a wide-field auroral imager (WAI) that was developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), which will provide a large field of view (FOV), high spatial resolution, and broadband ultraviolet images of the aurora and the ionosphere by imaging the N2 LBH bands of emissions. The WAI consists of two identical cameras, each with an FOV of 68\textdegree in the along-track direction and 10\textdegree in the cross-track direction. The two cameras are tilted relative to each other to cover a fan-shaped field of size 130\textdegree \texttimes 10\textdegree. Each camera consists of an unobstructed four-mirror anastigmatic optical system, a BaF2 filter, and a photon-counting imaging detector. The spatial resolution of WAI is ~10 km at the nadir point at a reference height of 110 km above the Earth\textquoterights surface. The sensitivity is \>0.01 counts s-1 Rayleigh-1 pixel-1 (140\textendash180 nm) for both cameras, which is sufficient for mapping the boundaries and the fine structures of the auroral oval during storms/substorms. Based on the tests and calibrations that were conducted prior to launch, the data processing algorithm includes photon signal decoding, geometric distortion correction, photometric correction, flat-field correction, line-of-sight projection and correction, and normalization between the two cameras. Preliminarily processed images are compared with DMSP SSUSI images. The agreement between the images that were captured by two instruments demonstrates that the WAI and the data processing algorithm operate normally and can provide high-quality scientific data for future studies on auroral dynamics.

Zhang, Xiao-Xin; Chen, Bo; He, Fei; Song, Ke-Fei; He, Ling-Ping; Liu, Shi-Jie; Guo, Quan-Feng; Li, Jia-Wei; Wang, Xiao-Dong; Zhang, Hong-Ji; Wang, Hai-Feng; Han, Zhen-Wei; Sun, Liang; Zhang, Pei-Jie; Dai, Shuang; Ding, Guang-Xing; Chen, Li-Heng; Wang, Zhong-Su; Shi, Guang-Wei; Zhang, Xin; Yu, Chao; Yang, Zhong-Dong; Zhang, Peng; Wang, Jin-Song;

Published by: Light: Science \& Applications      Published on: 05/2019

YEAR: 2019     DOI: 10.1038/s41377-019-0157-7

Wide-field auroral imager onboard the Fengyun satellite

The newly launched Fengyun-3D (FY-3D) satellite carried a wide-field auroral imager (WAI) that was developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), which will provide a large field of view (FOV), high spatial resolution, and broadband ultraviolet images of the aurora and the ionosphere by imaging the N2 LBH bands of emissions. The WAI consists of two identical cameras, each with an FOV of 68\textdegree in the along-track direction and 10\textdegree in the cross-track direction. The two cameras are tilted relative to each other to cover a fan-shaped field of size 130\textdegree \texttimes 10\textdegree. Each camera consists of an unobstructed four-mirror anastigmatic optical system, a BaF2 filter, and a photon-counting imaging detector. The spatial resolution of WAI is ~10 km at the nadir point at a reference height of 110 km above the Earth\textquoterights surface. The sensitivity is \>0.01 counts s-1 Rayleigh-1 pixel-1 (140\textendash180 nm) for both cameras, which is sufficient for mapping the boundaries and the fine structures of the auroral oval during storms/substorms. Based on the tests and calibrations that were conducted prior to launch, the data processing algorithm includes photon signal decoding, geometric distortion correction, photometric correction, flat-field correction, line-of-sight projection and correction, and normalization between the two cameras. Preliminarily processed images are compared with DMSP SSUSI images. The agreement between the images that were captured by two instruments demonstrates that the WAI and the data processing algorithm operate normally and can provide high-quality scientific data for future studies on auroral dynamics.

Zhang, Xiao-Xin; Chen, Bo; He, Fei; Song, Ke-Fei; He, Ling-Ping; Liu, Shi-Jie; Guo, Quan-Feng; Li, Jia-Wei; Wang, Xiao-Dong; Zhang, Hong-Ji; Wang, Hai-Feng; Han, Zhen-Wei; Sun, Liang; Zhang, Pei-Jie; Dai, Shuang; Ding, Guang-Xing; Chen, Li-Heng; Wang, Zhong-Su; Shi, Guang-Wei; Zhang, Xin; Yu, Chao; Yang, Zhong-Dong; Zhang, Peng; Wang, Jin-Song;

Published by: Light: Science \& Applications      Published on: 05/2019

YEAR: 2019     DOI: 10.1038/s41377-019-0157-7

Anomaly distribution of ionospheric total electron content responses to some solar flares

Le, Huijun; Liu, Libo; Chen, Yiding; Zhang, Hui;

Published by: Earth and Planetary Physics      Published on:

YEAR: 2019     DOI:

Equatorial ionospheric electrodynamics over Jicamarca during the 6—11 September 2017 space weather event

We use the observations from the incoherent scatter radar and the magnetometers over Jicamarca (11.95 S, 76.87 W) sector to investigate the equatorial ionospheric electrodynamics

Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2019     DOI: 10.1029/2018JA026295

2018

The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain

Shpynev, B.G.; Zolotukhina, N.A.; Polekh, N.M.; Ratovsky, K.G.; Chernigovskaya, M.A.; Belinskaya, A.Yu.; Stepanov, A.E.; Bychkov, V.V.; Grigorieva, S.A.; Panchenko, V.A.; Korenkova, N.A.; Mielich, J.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1016/j.jastp.2017.10.014

Investigation of the Causes of the Longitudinal and Solar Cycle Variation of the Electron Density in the Bering Sea and Weddell Sea Anomalies

This paper investigates and quantifies the longitudinal, solar cyclical, and diurnal variation of the ionosphere peak electron density observed by six ionosondes located between 18 and 151\textdegreeE near 60\textdegreeN. Embedded within this region is the Bering Sea anomaly (BSA) where the midnight peak electron density exceeds the midday peak electron density in summer. The BSA is a region West of Alaska extending from approximately 100\textdegree to 200\textdegree east geographic longitude and 55\textdegree to 70\textdegree north geographic latitude at its widest. By comparing a physical model with ionosonde data from the 1970s and 1980s, it is found that longitudinal changes in the neutral winds and neutral densities are the most likely explanation for the electron density variation between 18 and 151\textdegreeE near 60\textdegreeN. Longitudinal differences in magnetic declination and inclination are small and have a negligible effect on the electron density behavior. Our definition of and the behavior of the BSA are analogous to the Weddell Sea anomaly (WSA), a region in the Southern Hemisphere where the midnight peak electron density also exceeds the midday peak electron density in summer. Although the overall BSA electron density is a factor of 2 smaller than that in the WSA, the two anomalies have similar midnight to midday electron density ratios. It is found that the BSA gets stronger with increasing solar activity, while the WSA gets weaker. It is also demonstrated that including vibrationally excited N2 in an ionosphere model is crucial for producing the observed midnight to midday electron density ratios.

Richards, P.; Meier, R.; Chen, Shihping; Dandenault, P.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2018

YEAR: 2018     DOI: 10.1029/2018JA025413

Was Magnetic Storm the Only Driver of the Long-Duration Enhancements of Daytime Total Electron Content in the Asian-Australian Sector Between 7 and 12 September 2017?

In this study, multiple data sets from Beidou geostationary orbit satellites total electron contents (TECs), ionosonde, meteor radar, magnetometer, and model simulations have been used to investigate the ionospheric responses in the Asian-Australian sector during the September 2017 geomagnetic storm. It was found that long-duration daytime TEC enhancements that lasted from 7 to 12 September 2017 were observed by the Beidou geostationary orbit satellite constellation. This is a unique event as the prominent TEC enhancements persisted during the storm recovery phase when geomagnetic activity became quiet. The Thermosphere-Ionosphere Electrodynamics Global Circulation Model predicted that the TEC enhancements on 7\textendash9 September were associated with the geomagnetic activity, but it showed significant electron density depletions on 10 and 11 September in contrast to the observed TEC enhancements. Our results suggested that the observed long-duration TEC enhancements from 7 to 12 September are mainly associated with the interplay of ionospheric dynamics and electrodynamics. Nevertheless, the root causes for the observed TEC enhancements seen in the storm recovery phase are unknown and require further observations and model studies.

Lei, Jiuhou; Huang, Fuqing; Chen, Xuetao; Zhong, Jiahao; Ren, Dexin; Wang, Wenbin; Yue, Xinan; Luan, Xiaoli; Jia, Mingjiao; Dou, Xiankang; Hu, Lianhuan; Ning, Baiqi; Owolabi, Charles; Chen, Jinsong; Li, Guozhu; Xue, Xianghui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017JA025166

Was Magnetic Storm the Only Driver of the Long-Duration Enhancements of Daytime Total Electron Content in the Asian-Australian Sector Between 7 and 12 September 2017?

In this study, multiple data sets from Beidou geostationary orbit satellites total electron contents (TECs), ionosonde, meteor radar, magnetometer, and model simulations have been used to investigate the ionospheric responses in the Asian-Australian sector during the September 2017 geomagnetic storm. It was found that long-duration daytime TEC enhancements that lasted from 7 to 12 September 2017 were observed by the Beidou geostationary orbit satellite constellation. This is a unique event as the prominent TEC enhancements persisted during the storm recovery phase when geomagnetic activity became quiet. The Thermosphere-Ionosphere Electrodynamics Global Circulation Model predicted that the TEC enhancements on 7\textendash9 September were associated with the geomagnetic activity, but it showed significant electron density depletions on 10 and 11 September in contrast to the observed TEC enhancements. Our results suggested that the observed long-duration TEC enhancements from 7 to 12 September are mainly associated with the interplay of ionospheric dynamics and electrodynamics. Nevertheless, the root causes for the observed TEC enhancements seen in the storm recovery phase are unknown and require further observations and model studies.

Lei, Jiuhou; Huang, Fuqing; Chen, Xuetao; Zhong, Jiahao; Ren, Dexin; Wang, Wenbin; Yue, Xinan; Luan, Xiaoli; Jia, Mingjiao; Dou, Xiankang; Hu, Lianhuan; Ning, Baiqi; Owolabi, Charles; Chen, Jinsong; Li, Guozhu; Xue, Xianghui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017JA025166

Neutralized solar wind ahead of the Earth s magnetopause as contribution to non-thermal exospheric hydrogen

Their exciting result is inferred from radiative transfer modeling of Lyman-alpha resonance glow measurements made with the satellite TIMED/GUVI. To best fit these results with their

Fahr, Hans; Nass, Uwe; Dutta-Roy, Robindro; Zoennchen, Jochen;

Published by:       Published on:

YEAR: 2018     DOI: 10.5194/angeo-36-445-2018

Development of a new aurora model for the small-and meso-scale structures through deep-learning methods and their influence on the upper atmosphere

Deng, Y; Chen, Z; , Wang; Sheng, Cheng; , Jin; Zhang, Yongliang; Paxton, Larry; Deng, Xiaohua; Huang, Chung-Ming;

Published by:       Published on:

YEAR: 2018     DOI:

Reconstruction the Ionospheric Responses to the October-November 2003 Halloween Super Storm: A Data Assimilation Approach

Chang, Yu-Shan; Chen, Chia-Hung; Lin, Charles; Chu, Hung-Hsuan; Matsuo, Tomoko;

Published by:       Published on:

YEAR: 2018     DOI:

2017

The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts

In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24\ h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.

Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024637

Investigation of the Causes of the Longitudinal Variation of the Electron Density in the Weddell Sea Anomaly

This paper investigates and quantifies the causes of the Weddell Sea Anomaly (WSA), a region near the tip of South America extending from approximately 30\textdegree to 120\textdegreeW geographic longitude and 50\textdegree to 75\textdegreeS geographic latitude at solar minimum between 2007 and 2010. This region is unusual because the midnight peak electron density exceeds the midday peak electron density in summer. This study is far more quantitative than previous studies because, unlike other models, it assimilates selected data parameters to constrain a physical model in order to investigate other aspects of the data. It is shown that the commonly accepted explanation that the WSA is related to the magnetic field declination and inclination effects on the neutral wind does not explain the longitudinal variation of the electron density. Rather, longitudinal changes in the neutral winds and neutral densities are the most likely explanation for the WSA. These longitudinal wind and density changes are attributed to the varying latitudinal distance from the auroral zone energy input. No contributions from the plasmasphere or other sources are required. Furthermore, it is shown that a widely used empirical thermosphere density model overestimates the longitudinal changes in the WSA region.

Richards, P.; Meier, R.; Chen, Shih-Ping; Drob, D.; Dandenault, P.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2016JA023565

Regional differences of the ionospheric response to the July 2012 geomagnetic storm

The July 2012 geomagnetic storm is an extreme space weather event in solar cycle 24, which is characterized by a southward interplanetary geomagnetic field lasting for about 30\ h below -10\ nT. In this work, multiple instrumental observations, including electron density from ionosondes, total electron content (TEC) from Global Positioning System, Jason-2, and Gravity Recovery and Climate Experiment, and the topside ion concentration observed by the Defense Meteorological Satellite Program spacecraft are used to comprehensively present the regional differences of the ionospheric response to this event. In the Asian-Australian sector, an intensive negative storm is detected near longitude ~120\textdegreeE on 16 July, and in the topside ionosphere the negative phase is mainly existed in the equatorial region. The topside and bottomside TEC contribute equally to the depletion in TEC, and the disturbed electric fields make a reasonable contribution. On 15 July, the positive storm effects are stronger in the Eastside than in the Westside. The topside TEC make a major contribution to the enhancement in TEC for the positive phases, showing the important role of the equatorward neutral winds. For the American sector, the equatorial ionization anomaly intensification is stronger in the Westside than in the Eastside and shows the strongest feature in the longitude ~110\textdegreeW. The combined effects of the disturbed electric fields, composition disturbances, and neutral winds cause the complex storm time features. Both the topside ion concentrations and TEC reveal the remarkable hemispheric asymmetry, which is mainly resulted from the asymmetry in neutral winds and composition disturbances.

Kuai, Jiawei; Liu, Libo; Lei, Jiuhou; Liu, Jing; Zhao, Biqiang; Chen, Yiding; Le, Huijun; Wang, Yungang; Hu, Lianhuan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023844

A new auroral boundary determination algorithm based on observations from TIMED/GUVI and DMSP/SSUSI

An automatic auroral boundary determination algorithm is proposed in this study based on the partial auroral oval images from the Global Ultraviolet Imager (GUVI) aboard the Thermosphere\textendashIonosphere-Mesosphere Energetics and Dynamics satellite and the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) aboard the Defense Meteorological Satellite Program (DMSP F16). This algorithm based on the fuzzy local information C-means clustering segmentation can be used to extract the auroral oval poleward and equatorward boundaries from merged images with filled gaps from both GUVI and SSUSI. Both extracted poleward and equatorward boundary locations are used to fit the global shape of the auroral oval with a off-center quasi-elliptical fitting technique. Comparison of the extracted auroral oval boundaries with those identified from the DMSP SSJ observations demonstrates that this new proposed algorithm can reliably be used to construct the global configuration of auroral ovals under different geomagnetic activities at different local times. The statistical errors of magnetic latitudes of the fitted auroral oval boundaries were generally less than 3\textdegree at 2 sigma and indicate that the the fitted boundaries agree better with b2e and b5e than b1e and b6 boundaries. This proposed algorithm provides us with a useful tool to extract the global shape and position of the auroral oval from the partial auroral images.

Ding, Guang-Xing; He, Fei; Zhang, Xiao-Xin; Chen, Bo;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.210.1002/2016JA023295

New constraints on Ganymede s hydrogen corona: Analysis of Lyman-$\alpha$ emissions observed by HST/STIS between 1998 and 2014

Far-ultraviolet observations of Ganymede s atmospheric emissions were obtained with the Space Telescope Imaging Spectrograph (STIS) onboard of the Hubble Space Telescope (HST

Alday, Juan; Roth, Lorenz; Ivchenko, Nickolay; Retherford, Kurt; Becker, Tracy; Molyneux, Philippa; Saur, Joachim;

Published by: Planetary and Space Science      Published on:

YEAR: 2017     DOI: 10.1016/j.pss.2017.10.006

On the need for Artificial Intelligence and Advanced Test and Evaluation Methods for Space Exploration.

Scheidt, DH; Hibbitts, CA; Chen, MH; Bekker, DL; Paxton, LJ; , others;

Published by:       Published on:

YEAR: 2017     DOI:

Studying the ionosphere response to severe geomagnetic storm in March 2015 according to Eurasian ionosonde chain

Shpynev, BG; Zolotukhina, NA; Polekh, NM; Chernigovskaya, MA; Ratovsky, KG; Belinskaya, Yu; Stepanov, AE; Bychkov, VV; Grigorieva, SA; Panchenko, VA; , others;

Published by: Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa      Published on:

YEAR: 2017     DOI:

2016

The observation and simulation of ionospheric response to CIR/high-speed streams-induced geomagnetic activity on 4 April 2005

The ionospheric response to corotating interaction region (CIR)-induced geomagnetic activity on 4 April 2005 has been studied using in situ electron density measurements, ground GPS-total electron content (TEC) observations, and numerical simulations of the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The case study resulted that the ionospheric positive response occurred from high to low latitudes. The positive effect at low latitudes could continue for 4 days, whereas at middle to high latitudes the disturbance mainly lasted only for 1 day. The modeled Ne and TEC from TIE-GCM had a good agreement with those from observations. The simulation results showed that penetration electric fields were responsible for the daytime positive response during the initial and main phases of the geomagnetic storm, while neutral winds were responsible for the presunset positive effects. The long-lasting positive storm effect during the storm recovery time at low latitudes was related to the thermospheric composition (O/N 2 ) changes during the storm event.

Chen, Yanhong; Wang, Wenbin; Qiu, Na; Liu, Siqing; Gong, Jiancun; Huang, Wengeng;

Published by: Radio Science      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/rds.v51.810.1002/2015RS005937

Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions

The main purpose of this paper is to investigate the effects of rapid assimilation-forecast cycling on the performance of ionospheric data assimilation during geomagnetic storm conditions. An ensemble Kalman filter software developed by the National Center for Atmospheric Research (NCAR), called Data Assimilation Research Testbed, is applied to assimilate ground-based GPS total electron content (TEC) observations into a theoretical numerical model of the thermosphere and ionosphere (NCAR thermosphere-ionosphere-electrodynamics general circulation model) during the 26 September 2011 geomagnetic storm period. Effects of various assimilation-forecast cycle lengths: 60, 30, and 10 min on the ionospheric forecast are examined by using the global root-mean-squared observation-minus-forecast (OmF) TEC residuals. Substantial reduction in the global OmF for the 10 min assimilation-forecast cycling suggests that a rapid cycling ionospheric data assimilation system can greatly improve the quality of the model forecast during geomagnetic storm conditions. Furthermore, updating the thermospheric state variables in the coupled thermosphere-ionosphere forecast model in the assimilation step is an important factor in improving the trajectory of model forecasting. The shorter assimilation-forecast cycling (10 min in this paper) helps to restrain unrealistic model error growth during the forecast step due to the imbalance among model state variables resulting from an inadequate state update, which in turn leads to a greater forecast accuracy.

Chen, C.; Lin, C.; Matsuo, T.; Chen, W.; Lee, I.; Liu, J; Lin, J.; Hsu, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA021787



  1      2