Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 21 entries in the Bibliography.


Showing entries from 1 through 21


2022

Model Estimate of the Height of the Lower Limit of Integration when Obtaining the Ratio of the Concentrations of Atomic Oxygen and Molecular Nitrogen, n (O)/n (N2), According to the Timed Guvi Observation Technique

The results of the model estimate of the height of the lower limit of integration of the ratio of the concentrations of atomic oxygen and molecular nitrogen (n(O)/n(N2)) in the thermosphere according to observations using the Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics Global UltraViolet Imager (TIMED GUVI) method are presented.

Klimenko, MV; Klimenko, VV; Yasyukevich, AS; Ratovsky, KG;

Published by: Russian Journal of Physical Chemistry B      Published on:

YEAR: 2022     DOI: 10.1134/S1990793122030071

2021

The Influence of the Atmosphere on the Variability of the Electronic Concentration in the Ionosphere on January 2009

The results of the study of the variability of the electron concentration in the ionosphere in January 2009 are presented. Variations in the electron density in the ionosphere above individual stations and in the global electron content are considered based on the observation data and the results of the model calculations. Comparison of the ionospheric variability obtained from the results of calculations using the models of the upper atmosphere (GSM TIP) and the entire atmosphere (EAGLE) showed that the atmospheric-ionospheric interaction can play one of the key roles in the variability of the ionosphere at midlatitudes. The paper also discusses the issue of simulating the effects of stratospheric warming in 2009 using the EAGLE model.

Klimenko, M.; Ratovsky, K.; Klimenko, V.; Bessarab, F.; Sukhodolov, T.; Rozanov, E.;

Published by: Russian Journal of Physical Chemistry B      Published on: sep

YEAR: 2021     DOI: 10.1134/S1990793121050171

atmosphere; global electron abundance; Ionosphere; model of the entire atmosphere; neutral composition of the upper atmosphere; sudden stratospheric warming

Delay in Response of Global Electron Content and Electron Concentration at Various Altitudes to 27-Day Variations in Solar Activity

We investigate the influence of 27-day variations in solar activity related to the rotation of the Sun around its axis on the thermosphere–ionosphere system at different latitudes and heights, using the results of the calculations of the model of the Earth’s upper atmosphere. Based on the results of the model calculations, related processes in the thermosphere–ionosphere system were analyzed in the period from June 20 to July 21, 2014. There is a clear reaction to the daytime electron concentration Ne in the ionosphere for 27-day variations of the solar radiation flux (index F10.7). Using comparative and correlational analyses, we revealed the delay in the variations of the daytime electron concentration values calculated in the Ne model at different heights, including at the maximum of the F2-layer of the ionosphere (NmF2) and the total electron content and global electron content regarding changes F10.7. It is shown that changes in the O/N2 ratio are the main possible reasons for the delay. The revealed two-day lag in the global electron content is consistent with the results obtained earlier from the observational data. The height structure of the delay Ne relative to F10.7 is discussed. The results of the calculations over the ionospheric stations of the Northern Hemisphere showed that the maximum delay of variations Ne relative to F10.7 is obtained in high and low latitudes, and less at the subauroral and middle latitudes. It is shown that the lag of variations in the total electron content relative to F10.7 is always less than in the case of NmF2.

Klimenko, M.; Klimenko, V.; Ratovsky, K.; Yasyukevich, A.;

Published by: Russian Journal of Physical Chemistry B      Published on: may

YEAR: 2021     DOI: 10.1134/S1990793121030052

Ionosphere; global electron content; neutral composition of the thermosphere; solar activity

Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations

We present a joint analysis of longitude-temporal variations of ionospheric and geomagnetic parameters at middle and high latitudes in the Northern Hemisphere during the two severe magnetic storms in March and June 2015 by using data from the chains of magnetometers, ionosondes and GPS/GLONASS receivers. We identify the fixed longitudinal zones where the variability of the magnetic field is consistently high or low under quiet and disturbed geomagnetic conditions. The revealed longitudinal structure of the geomagnetic field variability in quiet geomagnetic conditions is caused by the discrepancy of the geographic and magnetic poles and by the spatial anomalies of different scales in the main magnetic field of the Earth. Variations of ionospheric parameters are shown to exhibit a pronounced longitudinal inhomogeneity with changing geomagnetic conditions. This inhomogeneity is associated with the longitudinal features of background and disturbed structure of the geomagnetic field. During the recovery phase of a storm, important role in dynamics of the mid-latitude ionosphere may belong to wave-like thermospheric disturbances of molecular gas, propagating westward for several days. Therefore, it is necessary to extend the time interval for studying the ionospheric effects of strong magnetic storms by a few days after the end of the magnetospheric source influence, while the disturbed regions in the thermosphere continues moving westward and causes the electron density decrease along the trajectories of propagation.

Chernigovskaya, M.; Shpynev, B.; Yasyukevich, A.; Khabituev, D.; Ratovsky, K.; Belinskaya, Yu.; Stepanov, A.; Bychkov, V.; Grigorieva, S.; Panchenko, V.; Kouba, D.; Mielich, J.;

Published by: Advances in Space Research      Published on: jan

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.028

Chain of GPS/GLONASS receivers; Geomagnetic field variations; geomagnetic storm; Ionosonde chain; ionospheric disturbances

2019

Influence of Solar Rotation Influence on Ionospheric/Thermospheric Parameters: Modeling and Observations for Case Studies

Klimenko, MV; Ratovsky, KG; Themens, D; Yasukevich, AS; Klimenko, VV;

Published by:       Published on:

YEAR: 2019     DOI:

2018

The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain

Shpynev, B.G.; Zolotukhina, N.A.; Polekh, N.M.; Ratovsky, K.G.; Chernigovskaya, M.A.; Belinskaya, A.Yu.; Stepanov, A.E.; Bychkov, V.V.; Grigorieva, S.A.; Panchenko, V.A.; Korenkova, N.A.; Mielich, J.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1016/j.jastp.2017.10.014

Changes in the middle and upper atmosphere parameters during the January 2013 sudden stratospheric warming

We present the results of complex obser-vationsof various parameters of the middle and upper atmosphere over Siberia in December 2012 \textendashJanuary 2013, during a major sudden stratospheric warming (SSW) event. We analyze variations in ozone concentra-tion from microwave measurements, in stratosphere and lower mesosphere temperatures from lidar and satellite measurements, in the F2-layer critical frequency (foF2), in the total electron content (TEC), as well as in the ra-tio of concentrations of atomic oxygen to molecular nitrogen (O/N2) in the thermosphere.To interpret the observed disturbances in the upper atmosphere, the ex-perimental measurements are compared with the results of model calculations obtained with the Global Self-Consistent Model of Thermosphere\textemdashIonosphere\textemdashProtonosphere (GSM TIP). The response of the upper atmosphere to the SSW event is shown to be a decreasein foF2 and TEC during the evolution of the warming event and a prolonged increase in O/N2, foF2, and TEC after the SSW maximum. For the first time, we observe the relation between the increase in stratospheric ozone, thermospheric O/N2, and ionospheric electron densityfor a fairly long time (up to 20 days) after the SSW maximum at midlatitudes.

Ясюкевич, Анна; Yasyukevich, Anna; Клименко, Максим; Klimenko, Maksim; Куликов, Юрий; Kulikov, Yury; Клименко, Владимир; Klimenko, Vladimir; Бессараб, Федор; Bessarab, Fedor; Кореньков, Юрий; Korenkov, Yuriy; Маричев, Валерий; Marichev, Valery; Ратовский, Константин; Ratovsky, Konstantin; Колесник, Сергей; Kolesnik, Sergey;

Published by: Solnechno-Zemnaya Fizika      Published on: 08/2018

YEAR: 2018     DOI: 10.12737/issue_5c1b83b913d443.7589563310.12737/szf-44201807

Winter anomaly in NmF2 and TEC: when and where it can occur

Yasyukevich, Yury; Yasyukevich, Anna; Ratovsky, Konstantin; Klimenko, Maxim; Klimenko, Vladimir; Chirik, Nikolay;

Published by: Journal of Space Weather and Space Climate      Published on:

YEAR: 2018     DOI:

Changes in the Stratosphere and Ionosphere Parameters During the 2013 Major Stratospheric Warming

The paper presents the results of the complex experiment (lidar and ozonometric observations), carried out during the period of the 2013 major sudden stratospheric warming (SSW) in the North Asia region. The data of this experiment were supplemented by the ionospheric parameters observations. We considered variations in the critical frequency and peak height of the ionospheric F2-layer (foF2) from ionosonde measurements in Tomsk and Irkutsk, as well as the behavior of the total electron content (TEC) based on the phase dual-frequency GPS/GLONASS receivers\textquoteright data. We revealed significant variations in the stratosphere ozone concentration, ionospheric electron density, as well as in the thermosphere O/N 2 ratio with the similar pattern during the SSW. The ionospheric response to SSW in the middle and high-latitude regions is suggested to be caused by changes in the neutral composition at the thermosphere altitudes.

Yasyukevich, Anna; Kulikov, Yury; Klimenko, Maxim; Klimenko, Vladimir; Bessarab, Fedor; Korenkov, Yury; Marichev, Valery; Ratovsky, Konstantin; Kolesnik, Sergey;

Published by:       Published on:

YEAR: 2018     DOI: 10.23919/URSI-AT-RASC.2018.8471322

2017

Predictable and unpredictable ionospheric disturbances during St. Patrick s Day magnetic storms of 2013 and 2015 and on 8—9 March 2008

We present a comparative analysis of first principles Global Self‐consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) in prediction of ionospheric

Dmitriev, AV; Suvorova, AV; Klimenko, MV; Klimenko, VV; Ratovsky, KG; Rakhmatulin, RA; Parkhomov, VA;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2017     DOI: 10.1002/2016JA023260

Studying the ionosphere response to severe geomagnetic storm in March 2015 according to Eurasian ionosonde chain

Shpynev, BG; Zolotukhina, NA; Polekh, NM; Chernigovskaya, MA; Ratovsky, KG; Belinskaya, Yu; Stepanov, AE; Bychkov, VV; Grigorieva, SA; Panchenko, VA; , others;

Published by: Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa      Published on:

YEAR: 2017     DOI:

2015

Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26–29, 2011

This paper analyses the geomagnetic storm on September 26–29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

Kotova, D.S.; Klimenko, M.V.; Klimenko, V.V.; Zakharov, V.E.; Ratovsky, K.G.; Nosikov, I.A.; Zhao, B.;

Published by: Advances in Space Research      Published on:

YEAR: 2015     DOI: 10.1016/j.asr.2015.05.009

HF radio wave propagation model; IRI model; First principles model; ionosonde; 3 layer; geomagnetic storm

2013

Modeling of response of the thermosphere-ionosphere system to sudden stratospheric warmings of years 2008 and 2009

A study of the response of the thermosphere and ionosphere to sudden stratospheric warmings (SSWs) which occurred in January of 2008 and 2009 is presented. The Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) developed in the West Department of IZMIRAN was a theoretical basis for this study. A comparison of the simulation results of the thermosphere-ionosphere response to SSW events with the observational data over Irkutsk and also with theoretical and experimental studies carried out during the recent years is performed. SSW events were modeled by setting disturbances in the neutral temperature and density at the lower boundary of the GSM TIP model (80 km above the Earth\textquoterights surface). It is shown that the disturbances related to SSW lead to substantial global effects in the thermosphere and ionosphere. The analysis of the experimental data showed that, in spite of very similar solar and geophysical conditions on the background of which two considered stratospheric warming events happened, the occurring disturbances in temperature at heights of the mesosphere and lower thermosphere differ substantially from each other, although some common regularities still take place especially at heights of the ionospheric F region.

Klimenko, M.; Klimenko, V.; textquoterightkov, Yu.; Bessarab, F.; Karpov, I.; Ratovsky, K.; Chernigovskaya, M.;

Published by: Cosmic Research      Published on: 01/2013

YEAR: 2013     DOI: 10.1134/S001095251301005X

Simulation of the system response of the thermosphere ionosphere on FLASH stratospheric warming in 2008 and 2009

Ratovsky, KG; Chernihiv, MA;

Published by: Space Research      Published on:

YEAR: 2013     DOI:

2012

Modeling the effect of sudden stratospheric warming within the thermosphere--ionosphere system

This paper presents an investigation of thermospheric and ionospheric response to the sudden stratospheric warming (SSW) event, which took place in January 2009. This period was characterized by low solar and geomagnetic activity. Analysis was carried out within the Global Self-consistent Model of Thermosphere, Ionosphere and Protonosphere (GSM TIP). The experimental data of the atmospheric temperatures obtained by Aura satellite above Irkutsk and ionosonde data over Yakutsk and Irkutsk were utilized as well. SSW event was modeled by specifying the temperature and density perturbations at the lower boundary of the GSM TIP model (80\ km altitude). It was shown that by setting disturbances in the form of a stationary planetary perturbation s=1 at the lower boundary of the thermosphere, one could reproduce the negative electron density disturbances in the F region of ionosphere during SSW events. Our scenario for the 2009 SSW event in the GSM TIP allowed to obtain results which are in a qualitative agreement with the observation data.

Bessarab, F.S.; Korenkov, Yu.N.; Klimenko, M.V.; Klimenko, V.V.; Karpov, I.V.; Ratovsky, K.G.; Chernigovskaya, M.A.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 12/2012

YEAR: 2012     DOI: 10.1016/j.jastp.2012.09.005

Ionosphere; Modeling; sudden stratospheric warming; thermosphere

The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event

This paper presents a study of thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming (SSW) event. This period was characterized by low solar and geomagnetic activity. The study was performed using the Global Self-consistent Model of Thermosphere, Ionosphere, and Protonosphere (GSM TIP). Model results were compared with ionosonde data from Irkutsk, Kaliningrad, Sao Jose dos Campos, and Jicamarca. The SSW event was modeled by specifying the temperature and density perturbations at the lower boundary of the GSM TIP (80 km altitude). GSM TIP simulation allowed the reproduction of the lower thermosphere temperature disturbances (the occurrence of the quasi-wave 1 structure at 80\textendash130 km altitude with a vertical scale of \~40 km), the negative response of F2 region electron density and the positive response of electron temperature at 300 km during the 2008 minor SSW event. The main formation mechanism of the global ionospheric response is due to the disturbances (decrease) in then(O)/n(N2) ratio. The change in zonal electric field is another important mechanism of the ionospheric response at low latitudes.

Korenkov, Y.; Klimenko, V.; Klimenko, M.; Bessarab, F.; Korenkova, N.; Ratovsky, K.; Chernigovskaya, M.; Shcherbakov, A.; Sahai, Y.; Fagundes, P.; de Jesus, R.; de Abreu, A.; Condor, P.;

Published by: Journal of Geophysical Research      Published on: 10/2012

YEAR: 2012     DOI: 10.1029/2012JA018018

Electric field; Ionosphere; sudden stratospheric warming; thermosphere

2011

Ionospheric effects caused by the series of geomagnetic storms of September 9--14, 2005

Klimenko, M.; Klimenko, V.; Ratovsky, K.; Goncharenko, L.;

Published by: Geomagnetism and Aeronomy      Published on: Jan-06-2011

YEAR: 2011     DOI: 10.1134/S0016793211030108

Disturbances in the ionospheric F-region peak heights in the American longitudinal sector during geomagnetic storms of September 2005

In this paper, we use the modified GSM TIP model to explore how the thermosphere–ionosphere system in the American longitudinal sector responded to the series of geomagnetic storms on September 9–14, 2005. Comparison of modeling results with experimental data at Millstone Hill, USA (42.6°N, 71.5°W), Ramey, Puerto Rico (18.3°N, 66.8°W) and Jicamarca, Peru (11.9°S, 76.9°W) has shown a good agreement of ionospheric disturbances in the F-region maximum height. We examine in detail the formation mechanisms of these disturbances at different latitudes and describe some of the important physical processes affecting the behavior of the F-region. In addition, we consider the propagation of thermospheric wind surge and the formation of additional layers in the low-latitude ionosphere during geomagnetic storms.

Klimenko, M.V.; Klimenko, V.V.; Ratovsky, K.G.; Goncharenko, L.P.;

Published by: Advances in Space Research      Published on:

YEAR: 2011     DOI: https://doi.org/10.1016/j.asr.2011.06.002

geomagnetic storm; Ionospheric modeling; F-region maximum height; Electric field; F3-layer; Thermospheric wind surge

Numerical modeling of ionospheric effects in the middle-and low-latitude F region during geomagnetic storm sequence of 9--14 September 2005

This study presents the Global Self-Consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) numerical simulations of the 9–14 September 2005 geomagnetic

Klimenko, MV; Klimenko, VV; Ratovsky, KG; Goncharenko, LP; Sahai, Y; Fagundes, PR; De Jesus, R; De Abreu, AJ; Vesnin, AM;

Published by: Radio Science      Published on:

YEAR: 2011     DOI:

2010

Modeling of Ionosphere Effects of Geomagnetic Storm Sequence on September 9-14, 2005 in View of Solar Flares and Dependence of Model Input Parameters from AE-and Kp-indices

Klimenko, Maxim; Klimenko, Vladimir; Ratovsky, Konstantin; Goncharenko, Larisa;

Published by: 38th COSPAR Scientific Assembly      Published on:

YEAR: 2010     DOI:

Numerical modeling of ionospheric parameters during sequence of geomagnetic storms on September 9-14, 2005

In the given research it is presented the numerical calculation results of ionospheric parameters during sequence of geomagnetic storms on September 9–14, 2005. The calculations were executed with use of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), developed in WD IZMIRAN. The potential difference through polar caps (PDPC) and field-aligned currents of the second region (FAC2) were set as function of Kp-index. Thus, the time delay of the FAC2 variations relative to the PDPC varia- tions was considered. The obtained calculation results were analyzed and compared with experimental data obtained at stations Irkutsk, Yakutsk, Arecibo and Millstone Hill.

Klimenko, MV; Klimenko, VV; Ratovsky, KG; Goncharenko, LP;

Published by: Physics of Auroral Phenomena      Published on:

YEAR: 2010     DOI:



  1