Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2022

Ionospheric Disturbances and Irregularities during the 25--26 August 2018 Geomagnetic Storm

We use ground-based (GNSS, SuperDARN, and ionosondes) and space-borne (Swarm, CSES, and DMSP) instruments to study ionospheric disturbances due to the 25–26 August 2018 geomagnetic storm. The strongest large-scale storm-time enhancements were detected over the Asian and Pacific regions during the main and early recovery phases of the storm. In the American sector, there occurred the most complex effects caused by the action of multiple drivers. At the beginning of the storm, a large positive disturbance occurred over North America at low and high latitudes, driven by the storm-time reinforcement of the equatorial ionization anomaly (at low latitudes) and by particle precipitation (at high latitudes). During local nighttime hours, we observed numerous medium-scale positive and negative ionospheric disturbances at middle and high latitudes that were attributed to a storm-enhanced density (SED)-plume, mid-latitude ionospheric trough, and particle precipitation in the auroral zone. In South America, total electron content (TEC) maps clearly showed the presence of the equatorial plasma bubbles, that, however, were not seen in data of Rate-of-TEC-change index (ROTI). Global ROTI maps revealed intensive small-scale irregularities at high latitudes in both hemispheres within the auroral region. In general, the ROTI disturbance “imaged” quite well the auroral oval boundaries. The most intensive ionospheric fluctuations were observed at low and mid-latitudes over the Pacific Ocean. The storm also affected the positioning accuracy by GPS receivers: during the main phase of the storm, the precise point positioning error exceeded 0.5 m, which is more than five times greater as compared to quiet days.

Astafyeva, E.; Yasyukevich, Y.; Maletckii, B.; Oinats, A.; Vesnin, A.; Yasyukevich, A.; Syrovatskii, S.; Guendouz, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029843

Geomagnetic storms; Ionosphere; ROTI; ionospheric disturbances; ionospheric irregularities; multi-instrumental approach

2011

Numerical modeling of ionospheric effects in the middle-and low-latitude F region during geomagnetic storm sequence of 9--14 September 2005

This study presents the Global Self-Consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) numerical simulations of the 9–14 September 2005 geomagnetic

Klimenko, MV; Klimenko, VV; Ratovsky, KG; Goncharenko, LP; Sahai, Y; Fagundes, PR; De Jesus, R; De Abreu, AJ; Vesnin, AM;

Published by: Radio Science      Published on:

YEAR: 2011     DOI:



  1