Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2022

Ionospheric Disturbances and Irregularities during the 25--26 August 2018 Geomagnetic Storm

We use ground-based (GNSS, SuperDARN, and ionosondes) and space-borne (Swarm, CSES, and DMSP) instruments to study ionospheric disturbances due to the 25–26 August 2018 geomagnetic storm. The strongest large-scale storm-time enhancements were detected over the Asian and Pacific regions during the main and early recovery phases of the storm. In the American sector, there occurred the most complex effects caused by the action of multiple drivers. At the beginning of the storm, a large positive disturbance occurred over North America at low and high latitudes, driven by the storm-time reinforcement of the equatorial ionization anomaly (at low latitudes) and by particle precipitation (at high latitudes). During local nighttime hours, we observed numerous medium-scale positive and negative ionospheric disturbances at middle and high latitudes that were attributed to a storm-enhanced density (SED)-plume, mid-latitude ionospheric trough, and particle precipitation in the auroral zone. In South America, total electron content (TEC) maps clearly showed the presence of the equatorial plasma bubbles, that, however, were not seen in data of Rate-of-TEC-change index (ROTI). Global ROTI maps revealed intensive small-scale irregularities at high latitudes in both hemispheres within the auroral region. In general, the ROTI disturbance “imaged” quite well the auroral oval boundaries. The most intensive ionospheric fluctuations were observed at low and mid-latitudes over the Pacific Ocean. The storm also affected the positioning accuracy by GPS receivers: during the main phase of the storm, the precise point positioning error exceeded 0.5 m, which is more than five times greater as compared to quiet days.

Astafyeva, E.; Yasyukevich, Y.; Maletckii, B.; Oinats, A.; Vesnin, A.; Yasyukevich, A.; Syrovatskii, S.; Guendouz, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029843

Geomagnetic storms; Ionosphere; ROTI; ionospheric disturbances; ionospheric irregularities; multi-instrumental approach

2021

A ROTI-Aided Equatorial Plasma Bubbles Detection Method

In this study, we present a Rate of Total Electron Content Index (ROTI)-aided equatorial plasma bubbles (EPBs) detection method based on a Global Navigation Satellite System (GNSS) ionospheric Total Electron Content (TEC). This technique seeks the EPBs occurrence time according to the ROTI values and then extracts the detrended ionospheric TEC series, which include EPBs signals using a low-order, partial polynomial fitting strategy. The EPBs over the Hong Kong area during the year of 2014 were detected using this technique. The results show that the temporal distribution and occurrence of EPBs over the Hong Kong area are consistent with that of previous reports, and most of the TEC depletion error is smaller than 1.5 TECU (average is 0.63 TECU), suggesting that the detection method is feasible and highly accurate. Furthermore, this technique can extract the TEC depletion series more effectively, especially for those with a long duration, compared to previous method.

Tang, Long; Louis, Osei-Poku; Chen, Wu; Chen, Mingli;

Published by: Remote Sensing      Published on: jan

YEAR: 2021     DOI: 10.3390/rs13214356

Ionosphere; detection method; equatorial plasma bubbles; GNSS; ROTI

2015

Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm

The magnetosphere substorm plays a crucial role in the solar wind energy dissipation into the ionosphere. We report on the intensity of the high-latitude ionospheric irregularities during one of the largest storms of the current solar cycle\textemdashthe St. Patrick\textquoterights Day storm of 17 March 2015. The database of more than 2500 ground-based Global Positioning System (GPS) receivers was used to estimate the irregularities occurrence and dynamics over the auroral region of the Northern Hemisphere. We analyze the dependence of the GPS-detected ionospheric irregularities on the auroral activity. The development and intensity of the high-latitude irregularities during this geomagnetic storm reveal a high correlation with the auroral hemispheric power and auroral electrojet indices (0.84 and 0.79, respectively). Besides the ionospheric irregularities caused by particle precipitation inside the polar cap region, evidences of other irregularities related to the storm enhanced density (SED), formed at mid-latitudes and its further transportation in the form of tongue of ionization (TOI) towards and across the polar cap, are presented. We highlight the importance accounting contribution of ionospheric irregularities not directly related with particle precipitation in overall irregularities distribution and intensity.

Cherniak, Iurii; Zakharenkova, Irina;

Published by: Earth, Planets and Space      Published on: 12/2015

YEAR: 2015     DOI: 10.1186/s40623-015-0316-x

Auroral hemispheric power index Auroral precipitation; geomagnetic storm; GPS; Ionosphere irregularities; ROTI



  1