Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 34 entries in the Bibliography.


Showing entries from 1 through 34


2022

Optomechanical design of a wide-field auroral imager on Fengyun-3D

We present the optomechanical design and development of a wide-field auroral imager (WAI) on board the satellite Fengyun-3D. The optomechanical system of the WAI features a combination of a large field of view and a single-axis scanning mechanism. The combination makes the WAI perform better than its counterparts in temporal resolution in a low Earth orbit. In-orbit tests have verified the survival of WAI in the launching vibration and space environment. It has functioned on-orbit since 2018, with a spatial resolution of ∼10km at the nadir point, at a reference height of 110 km above the ionosphere.

Guo, Quanfeng; Chen, Bo; Liu, ShiJie; Song, KeFei; He, LingPing; He, Fei; Zhao, Weiguo; Wang, Zhongsu; Chen, Liheng; Shi, Guangwei;

Published by: Applied Optics      Published on: apr

YEAR: 2022     DOI: 10.1364/AO.453949

Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015

Using observations by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on board the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) satellite and simulations by the TIEGCM (Thermosphere-Ionosphere-Electrodynamics General Circulation Model), we investigate the daytime variations of thermospheric nitric oxide (NO) cooling during the geomagnetic storm on 6 May 2015. The geomagnetic storm was minor, as the minimum Dst was −28 nT, the maximum Kp was 5+ and the maximum AE was 1259 nT. However, significant enhancements of peak NO cooling rate and prominent decreases in the peak NO cooling altitude were observed from high latitudes to low latitudes in both hemispheres on the dayside by the SABER instrument. The model simulations underestimate the response of peak NO cooling and have no significant variation of the altitude of peak NO cooling rate on the dayside during this minor geomagnetic storm. By investigating the temporal and latitudinal variations of vertical NO cooling profiles inferred from SABER data, we suggest that the horizontal equatorward winds caused by the minor geomagnetic storm were unexpectedly strong and thus play an important role in inducing these significant daytime NO cooling variations.

Li, Zheng; Sun, Meng; Li, Jingyuan; Zhang, Kedeng; Zhang, Hua; Xu, Xiaojun; Zhao, Xinhua;

Published by: Universe      Published on: apr

YEAR: 2022     DOI: 10.3390/universe8040236

geomagnetic storm; thermosphere; nitric oxide cooling

Spatial-Temporal Behaviors of Large-Scale Ionospheric Perturbations During Severe Geomagnetic Storms on September 7—8 2017 Using the GNSS, SWARM and TIE-GCM Techniques

Geomagnetic storms on 7–8 September 2017 triggered severe ionospheric disturbances that had a serious effect on satellite navigation and radio communication. Multiple observations

Li, Wang; Zhao, Dongsheng; He, Changyong; Hancock, Craig; Shen, Yi; Zhang, Kefei;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029830

Spatial-Temporal Behaviors of Large-Scale Ionospheric Perturbations During Severe Geomagnetic Storms on September 7–8 2017 Using the GNSS, SWARM and TIE-GCM Techniques

Geomagnetic storms on 7–8 September 2017 triggered severe ionospheric disturbances that had a serious effect on satellite navigation and radio communication. Multiple observations derived from Global Navigation Satellite System receivers, Earth s Magnetic Field and Environment Explorers (SWARM) and the Thermosphere-Ionosphere -Electrodynamics General Circulation Model s simulations are utilized to investigate the spatial-temporal ionospheric behaviors under storm conditions. The results indicate that the electron density in the Asia-Australia, Europe-Africa and America sectors suddenly changed with the Bz southward excursion, and the ionosphere over low-middle latitudes under the sunlit hemisphere is easily affected by the disturbed magnetic field. The SWARM observations verified the remarkable double-peak structure of plasma enhancements over the equator and middle latitudes. The physical mechanism of low-middle plasma disturbances can be explained by a combination effect of equatorial electrojets, vertical E × B drifts, meridional wind and thermospheric O/N2 change. Besides, the severe storms triggered strong Polar plasma disturbances on both dayside and nightside hemispheres, and the Polar disturbances had a latitudinal excursion associated with the offset of geomagnetic field. Remarkable plasma enhancements at the altitudes of 100–160 km were also observed in the auroral zone and middle latitudes (\textgreater47.5°N/S). The topside polar ionospheric plasma enhancements were dominated by the O+ ions. Furthermore, the TIE-GCM s simulations indicate that the enhanced vertical E × B drifts, cross polar cap potential and Joule heating play an important role in generating the topside plasma perturbations.

Li, Wang; Zhao, Dongsheng; He, Changyong; Hancock, Craig; Shen, Yi; Zhang, Kefei;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029830

hemispheric asymmetry; ionospheric disturbances; Magnetic storms; thermospheric composition changes; TIE-GCM

Geomagnetic and Solar Dependencies of Midlatitude E-Region Irregularity Occurrence Rate: A Climatology Based on Wuhan VHF Radar Observations

By using Wuhan VHF radar, we show the morphological features of E-region field-aligned irregularity (FAI) occurrence at Wuhan during 2015–2020. Statistical results present that E-region FAI occurrence reaches a maximum after sunset in summer season. According to Doppler spectrum features, type-2 irregularity is predominantly observed at Wuhan. In addition, we observed a remarkable correlation between E-region FAI occurrence and geomagnetic activity, which includes periods of positive correlation and negative correlation depending on different geomagnetic conditions. The strong negative correlation also exists between E-region FAI occurrence and solar activity. In our observed results, we find that E-region FAI occurrence shows a strong linkage with local sporadic E (ES) layer. A quantitative analysis of linear theory of plasma instability in the E-region at midlatitudes is also presented in our study. The calculated results of linear growth rate indicate the importance of plasma density gradient of local ES layer and field-line-integrated Pedersen conductivity on the generation of E-region FAI. The geomagnetic and solar variations of E-region FAI occurrence are also discussed in this study, which show a dependence on the geomagnetic and solar variations of both meteor rate and medium-scale traveling ionospheric disturbance occurrence.

Liu, Yi; Zhou, Chen; Xu, Tong; Deng, Zhongxin; Du, Zhitao; Lan, Ting; Tang, Qiong; Zhu, Yunzhou; Wang, Zhuangkai; Zhao, Zhengyu;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029597

2021

Inhibition of F3 Layer at Low Latitude Station Sanya During Recovery Phase of Geomagnetic Storms

A special F2 layer stratification structure named F3 layer occurs frequently in equatorial and low latitude ionosphere during summer daytime. In this study, a new phenomenon of decreasing occurrence of the F3 layer, and narrowing differences of virtual heights between the F3 and F2 layers in the recovery phase of geomagnetic storms is reported. We named this phenomenon as the inhibition of F3 layer event (IFLE). Using the ionosonde observations during summer of 2012–2015 at Sanya (18.3°N, 109.6°E, dip latitude 12.6°N), we found that IFLE occurred during 14 geomagnetic storms (−127 nT ≤ Dstmin ≤ −22 nT), which was accompanied by the thinning and lowering bottom ionosphere, and decreasing the crest-to-trough ratio of total electron content (TEC). Together with the ion drift data measured by Defense Meteorological Satellite Program F18, we suggest that the IFLE is mainly caused by the westward disturbance dynamo electric field (DDEF; downward drift velocity), taking disadvantage of the formation of the F3 layer. The observed decrease in the crest-to-trough ratio of TEC also indicates that the westward DDEF should prompt IFLE by providing less plasma from the equatorial region to the low latitude. Hence, IFLE then can be a good indicator to show how the magnetosphere-ionospheric coupling process affects the low and equatorial ionosphere. Notably, the results also indicate that even a very weak geomagnetic storm can generate significant changes in ionospheric state at low latitude.

Jin, Yuyan; Zhao, Biqiang; Li, Guozhu; Li, Zishen; Zhou, Xu;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029850

F3 layer; Geomagnetic storms; westward disturbance dynamo electric field

A Comparative Study of Ionospheric Day-To-Day Variability Over Wuhan Based on Ionosonde Measurements and Model Simulations

Ionospheric day-to-day variability is essential for understanding the space environment, while it is still challenging to properly quantify and forecast. In the present work, the day-to-day variability of F2 layer peak electron densities (NmF2) is examined from both observational and modeling perspectives. Ionosonde data over Wuhan station (30.5°N, 114.5°E; 19.3°N magnetic latitude) are compared with simulations from the specific dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X) and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) in 2009 and 2012. Both SD-WACCM-X and TIEGCM are driven by the realistic 3 h geomagnetic index and daily solar input, and the former includes self-consistently solved physics and chemistry in the lower atmosphere. The correlation coefficient between observations and SD-WACCM-X simulations is much larger than that of the TIEGCM simulations, especially during dusk in 2009 and nighttime in 2012. Both the observed and SD-WACCM-X simulated day-to-day variability of NmF2 reveal a similar day-night dependence in 2012 that increases large during the nighttime and decreases during the daytime, and shows favorable consistency of daytime variability in 2009. Both the observations and SD-WACCM-X simulations also display semiannual variations in nighttime NmF2 variability, although the month with maximum variability is slightly different. However, TIEGCM does not reproduce the day-night dependence or the semiannual variations well. The results emphasize the necessity for realistic lower atmospheric perturbations to characterize ionospheric day-to-day variability. This work also provides a validation of the SD-WACCM-X in terms of ionospheric day-to-day variability.

Zhou, Xu; Yue, Xinan; Liu, Han-Li; Lu, Xian; Wu, Haonan; Zhao, Xiukuan; He, Jianhui;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028589

Ionosphere; day-to-day variability; ionosonde; NmF2; TIEGCM; WACCM-X

Interaction Between an EMSTID and an EPB in the EIA Crest Region Over China

Few observations investigated the interaction between an electrical medium-scale traveling ionospheric disturbance (EMSTID) and an equatorial plasma bubble (EPB). This paper presents another interaction between a southwestward propagating EMSTID and an eastward drifting EPB in the equatorial ionization anomaly (EIA) crest region of China. When the EMSTID and the EPB touched each other, several depletions of the EMSTID (EPB) showed the eastward (westward) velocity disturbances of the EPB (EMSTID) depletions. Besides, phase elongations of the EPB depletions contrarotated as the EMSTID propagated southwestward. However, of important finding is that the interaction of the EMSTID and the EPB could have polarized one depletion of the postmidnight EPB that should have become a fossilized bubble. Inside that polarized EPB depletion were meter-scale irregularities that caused activated radar echoes and enhanced ranged spread F (RSF). The interaction occurred in descending ionosphere and the lower density regions got filled up with an enhanced density plasma. We propose that the EMSTID and the EPB could have electrically coupled with each other, causing an enhanced polarization electric field (PEF) that polarized that EPB depletion; the E × B gradient drift instability (Kelley, 1989) could have caused the meter-scale irregularities when that enhanced PEF was imposed on that reactivated EPB depletion surrounded by that enhanced density plasma. This study provides observational evidence that how an electrical couple of EMSTID and EPB events can activate a postmidnight EPB depletion that should become a fossilized structure.

Sun, Longchang; Xu, JiYao; Zhu, Yajun; Xiong, Chao; Yuan, Wei; Wu, Kun; Hao, Yongqiang; Chen, Gang; Yan, Chunxiao; Wang, Zhihua; Zhao, Xiukuan; Luo, Xiaomin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA029005

airglow; EIA crest region; Interaction between MSTID and EPB; Nighttime plasma density enhancement; Polarization of postmidnight EPB; VHF radar echoes and range spread F

2017

Regional differences of the ionospheric response to the July 2012 geomagnetic storm

The July 2012 geomagnetic storm is an extreme space weather event in solar cycle 24, which is characterized by a southward interplanetary geomagnetic field lasting for about 30\ h below -10\ nT. In this work, multiple instrumental observations, including electron density from ionosondes, total electron content (TEC) from Global Positioning System, Jason-2, and Gravity Recovery and Climate Experiment, and the topside ion concentration observed by the Defense Meteorological Satellite Program spacecraft are used to comprehensively present the regional differences of the ionospheric response to this event. In the Asian-Australian sector, an intensive negative storm is detected near longitude ~120\textdegreeE on 16 July, and in the topside ionosphere the negative phase is mainly existed in the equatorial region. The topside and bottomside TEC contribute equally to the depletion in TEC, and the disturbed electric fields make a reasonable contribution. On 15 July, the positive storm effects are stronger in the Eastside than in the Westside. The topside TEC make a major contribution to the enhancement in TEC for the positive phases, showing the important role of the equatorward neutral winds. For the American sector, the equatorial ionization anomaly intensification is stronger in the Westside than in the Eastside and shows the strongest feature in the longitude ~110\textdegreeW. The combined effects of the disturbed electric fields, composition disturbances, and neutral winds cause the complex storm time features. Both the topside ion concentrations and TEC reveal the remarkable hemispheric asymmetry, which is mainly resulted from the asymmetry in neutral winds and composition disturbances.

Kuai, Jiawei; Liu, Libo; Lei, Jiuhou; Liu, Jing; Zhao, Biqiang; Chen, Yiding; Le, Huijun; Wang, Yungang; Hu, Lianhuan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023844

2016

Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm

In this paper, an ionospheric electron density reanalysis algorithm was used to generate global optimized electron density during the 17\textendash18 March 2013 geomagnetic storm by assimilating ~10 low Earth orbit satellites based and ~450 ground global navigation satellite system receiver-based total electron content into a background ionospheric model. The reanalyzed electron density could identify the large-scale ionospheric features quite well during storm time, including the storm-enhanced density, the positive ionospheric storm effect during the initial and main phases, and the negative ionospheric storm effect during the recovery phase. The simulations from the Thermosphere Ionosphere Electrodynamics General Circulation Model can reproduce similar large-scale ionospheric disturbances as seen in the reanalysis results. Both the reanalysis and simulations show long-lasting (\>17 h) daytime negative storm effect over the Asia sector as well as hemispheric asymmetry during the recovery phase. Detailed analysis of the Global Ultraviolet Imager-derived O/N2 ratio and model simulations indicate that the polar ward meridional wind disturbance, the downward E \texttimes B drift disturbance and O/N2 depletion might be responsible for the negative storm effect. The hemispheric asymmetry is mainly caused by the geomagnetic field line configuration, which could cause hemispheric asymmetry in the O/N2 depletion.

Yue, Xinan; Wang, Wenbin; Lei, Jiuhou; Burns, Alan; Zhang, Yongliang; Wan, Weixing; Liu, Libo; Hu, Lianhuan; Zhao, Biqiang; Schreiner, William;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.910.1002/2016JA022984

2015

The long-duration positive storm effects in the equatorial ionosphere over Jicamarca

The long-duration positive storm (LPS) in the equatorial regions is relatively poorly understood. In this report, we conducted a statistical analysis of the LPS effects in the equatorial ionosphere over Jicamarca (12.0\textdegreeS, 283.2\textdegreeE) in 1998\textendash2010. There are 250 geomagnetic storms (minimum Dst \< -50 nT) in 1998\textendash2010, but the ionosonde observations at Jicamarca are available only for 204 storms. A total of 46 LPSs are identified in terms of the criterion that the storm time relative deviation of peak density of F2 layer (NmF2) exceeds 25\% for more than 6 h. A salient feature is that the occurrence of LPSs tends to decay approximately exponentially on the following days after the main phase of geomagnetic storms. The ratios of the number of equatorial LPSs to that of geomagnetic storms have no obvious dependence on season and solar activity. During the daytime LPSs, the disturbed zonal electric field is mostly westward, as indicated from the geomagnetic field changes in the equatorial American region. For the nighttime LPSs, the significant uplifting of F2 layer caused by an eastward electric field is the most important feature. Therefore, the disturbed electric field should play an essential role in forming the equatorial LPSs.

Kuai, Jiawei; Liu, Libo; Liu, Jing; Zhao, Biqiang; Chen, Yiding; Le, Huijun; Wan, Weixing;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020552

ionospheric long-duration positive storms

Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26–29, 2011

This paper analyses the geomagnetic storm on September 26–29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

Kotova, D.S.; Klimenko, M.V.; Klimenko, V.V.; Zakharov, V.E.; Ratovsky, K.G.; Nosikov, I.A.; Zhao, B.;

Published by: Advances in Space Research      Published on:

YEAR: 2015     DOI: 10.1016/j.asr.2015.05.009

HF radio wave propagation model; IRI model; First principles model; ionosonde; 3 layer; geomagnetic storm

2014

A study of GPS ionospheric scintillations observed at Shenzhen

Ionospheric scintillation variations are studied using GPS measurements at the low latitude station of Shenzhen (22.59\textdegreeN,\ 113.97\textdegreeE), situated under the northern crest of the equatorial anomaly region, from the Chinese Meridian Project. The results are presented for data collected during the current phase of rising solar activity (low to high solar activity) from December 2010 to April 2014. The results show that GPS scintillation events were largely a nighttime phenomenon during the whole observation period. Scintillation events mainly occurred along the inner edge of the northern crest of the equatorial anomaly in China. The occurrence of scintillations in different sectors of the sky was also investigated, and the results revealed that it is more likely for the scintillations to be observed in the west sector of the sky above Shenzhen. During the present period of study, a total number of 512 total electron content (TEC) depletions and 460 lock loss events were observed. In addition, both of these events are likely to increase during periods of high solar activity, especially because the strong scintillations are often simultaneously accompanied by TEC depletions and lock losses by GPS receivers.

Huang, Linfeng; Wang, Jinsong; Jiang, Yong; Chen, Zhou; Zhao, Kai;

Published by: Advances in Space Research      Published on: 12/2014

YEAR: 2014     DOI: 10.1016/j.asr.2014.08.023

GPS; Ionospheric scintillation; Scintillation event

A case study of ionospheric storm effects during long-lasting southward IMF B z -driven geomagnetic storm

Multiple instrumental observations including GPS total electron content (TEC), foF2 and hmF2 from ionosondes, vertical ion drift measurements from Communication/Navigation Outage Forecasting System, magnetometer data, and far ultraviolet airglow measured by Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI) are used to investigate the profound ionospheric disturbances at midlatitude and low latitude during the 14\textendash17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 h below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the equatorial ionospheric anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIMED/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electrojet observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm-enhanced density plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields appeared during stable southward interplanetary magnetic field (IMF) Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.

Liu, Jing; Liu, Libo; Nakamura, Takuji; Zhao, Biqiang; Ning, Baiqi; Yoshikawa, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020273

GUVI; Ionospheric storm; prompt penetration electric fields; TIMED

Solar and Heliospheric Physics General Contributions II Posters

Richardson, Ian; Millan, Robyn; Paxton, Larry; Zhao, Lingling;

Published by:       Published on:

YEAR: 2014     DOI:

A case study of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm

Liu, Jing; Liu, Libo; Nakamura, Takuji; Zhao, Biqiang; Ning, Baiqi; Yoshikawa, A;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2014     DOI:

2013

East-west differences in F -region electron density at midlatitude: Evidence from the Far East region

The global configuration of the geomagnetic field shows that the maximum east-west difference in geomagnetic declination of northern middle latitude lies in the US region (~32\textdegree), which produces the significant ionospheric east-west coast difference in terms of total electron content first revealed by Zhang et al. (2011). For verification, it is valuable to investigate this feature over the Far East area, which also shows significant geomagnetic declination east-west gradient but smaller (~15\textdegree) than that of the US. The current study provides evidence of the longitudinal change supporting the thermospheric zonal wind mechanism by examining the climatology of peak electron density (NmF2), electron density (Ne) of different altitudes in the Far East regions with a longitude separation of up to 40\textendash60\textdegree based on ground ionosonde and space-based measurements. Although the east-west difference (Rew) over the Far East area displays a clear diurnal variation similar to the US feature, that is negative Rew (West Ne \> East Ne) in the noon and positive at evening-night, the observational results reveal more differences including: (1) The noontime negative Rew is most pronounced in April\textendashJune while in the US during February\textendashMarch. Thus, for the late spring and summer period negative Rew over the Far East region is more significant than that of the US. (2) The positive Rew at night is much less evident than in the US, especially without winter enhancement. (3) The magnitude of negative Rew tends to enhance toward solar maximum while in the US showing anticorrelation with the solar activity. The altitude distribution of pronounced negative difference (300\textendash400 km) moves upward as the solar flux increases and hence produces the different solar activity dependence at different altitude. The result in the paper is not simply a comparison corresponding to the US results but raises some new features that are worth further studying and improve our current understanding of ionospheric longitude difference at midlatitude.

Zhao, Biqiang; Wang, Min; Wang, Yungang; Ren, Zhipeng; Yue, Xinan; Zhu, Jie; Wan, Weixing; Ning, Baiqi; Liu, Jing; Xiong, Bo;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2013

YEAR: 2013     DOI: 10.1029/2012JA018235

geomagnetic declination; longitudinal variation; midlatitude ionosphere

2012

A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere

Wan, W.; Ren, Z.; Ding, F.; Xiong, J.; Liu, L.; Ning, B.; Zhao, B.; Li, G.; Zhang, M.-L.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: Jan-12-2012

YEAR: 2012     DOI: 10.1016/j.jastp.2012.04.011

High-speed stream impacts on the equatorial ionization anomaly region during the deep solar minimum year 2008

Liu, Jing; Liu, Libo; Zhao, Biqiang; Wei, Yong; Hu, Lianhuan; Xiong, B.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2012

YEAR: 2012     DOI: 10.1029/2012JA018015

Superposed epoch analyses of thermospheric response to CIRs: Solar cycle and seasonal dependencies

Liu, Jing; Liu, Libo; Zhao, Biqiang; Lei, Jiuhou; Thayer, Jeffrey; McPherron, Robert;

Published by: Journal of Geophysical Research      Published on: Jan-01-2012

YEAR: 2012     DOI: 10.1029/2011JA017315

Influence of interplanetary solar wind sector polarity on the ionosphere

Knowledge of solar sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability and \textquotedbllefthysteresis\textquotedblright effect on foF2. Ionospheric response to changes in solar sector polarity has not been fully documented previously, partly due to the limitation of observations. In this study, a solar-terrestrial connection ranging from solar sector boundary (SB) crossings, geomagnetic disturbances and ionospheric perturbations has been demonstrated. The increases in interplanetary solar wind speed within three days are seen after SB crossings, while the decreases in solar wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a solar sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The IMF Bz component for the same solar sector polarity has opposite signs between March equinox and September equinox, and also between June solstice and December solstice. In order to know how the ionosphere reacts to the interplanetary solar wind variations linkage of SB crossings, the F2 region critical frequency (foF2) covering about four solar cycles and total electron content (TEC) during 1998\textendash2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of \textpm15\% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and solar cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southwardBzcomponents in equinox. In September equinox, latitudinal profile of relative variations of foF2 at noon is featured by depressions at high latitudes and enhancements in low-equatorial latitudes during IMF away sectors. The negative phase of foF2 is delayed at solar minimum relative to it during other parts of solar cycle, which might be associated with the difference in longevity of major interplanetary solar wind drivers perturbing the Earth\textquoterights environment in different phases of solar cycle.

Liu, Jing; Liu, Libo; Zhao, Biqiang; Wan, Weixing;

Published by: Journal of Geophysical Research      Published on: 08/2012

YEAR: 2012     DOI: 10.1029/2012JA017859

interplanetary magnetic field; Ionospheric disturbance; solar sector polarity

Recent Progresses on Ionospheric Climatology Investigations

The ionosphere varies over multiple time scales, which are classified into two categories: the climatology and weather variations. In this national report, we give a brief summary of recent progresses in ionospheric climatology with focus on (1) the seasonal variations, (2) solar cycle effects, and (3) empirical modeling of the ionosphere. The seasonal variations of the ionosphere have been explored in many works to give a more detailed picture with regional and global features at various altitudes by analyzing the observation data from various sources and models. Moreover, a series of studies reported the response of the ionosphere to solar cycle variations, which revealed some novel and detailed features of solar activity dependence of ionospheric parameters at different altitudes. These investigations have improved our understanding on the states of the ionosphere and underlying fundamental processes, provided clues to future studies on ionospheric weather, and guided ionospheric modeling, forecasting and related applications.

Liu, L.; Le, H.; Zhao, B.;

Published by: Chin. J. Space Sci.      Published on:

YEAR: 2012     DOI:

Climatological variation; Ionosphere; Ionospheric modeling; Seasonal variations; solar cycle

2010

Longitudinal modulation of the O/N2 column density retrieved from TIMED/GUVI measurement

He, Maosheng; Liu, Libo; Wan, Weixing; Lei, Jiuhou; Zhao, Biqiang;

Published by: Geophysical Research Letters      Published on: Jan-10-2010

YEAR: 2010     DOI: 10.1029/2010GL045105

Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide

Wan, W.; Xiong, J.; Ren, Z.; Liu, L.; Zhang, M.-L.; Ding, F.; Ning, B.; Zhao, B.; Yue, X.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2010

YEAR: 2010     DOI: 10.1029/2010JA015527

2009

Ionospheric response to the geomagnetic storm on 13\textendash17 April 2006 in the West Pacific region

This paper presents an investigation of geomagnetic storm effects in the equatorial and middle-low latitude F-region in the West Pacific sector during the intense geomagnetic storm on 13\textendash17 April, 2006. The event, preceded by a minor storm, started at 2130 UT on April 13 while interplanetary magnetic field (IMF)\ Bzcomponent was ready to turn southward. From 14\textendash17 the ionosphere was characterized by a large scale enhancement in critical frequency, foF2 (4\~6\ MHz) and total electron content (TEC) (\~30TECU, 1TECU=1\texttimes1016el/m2) followed by a long-duration negative phase observed through the simultaneous ionospheric sounding measurements from 14 stations and GPS network along the meridian 120\textdegreeE. A periodic wave structure, known as traveling ionospheric disturbances (TIDs) was observed in the morning sector during the initial phase of the storm which should be associated with the impulsive magnetospheric energy injection to the auroral. In the afternoon and nighttime, the positive phase should be caused by the combination of equatorward winds and disturbed electric fields verified through the equatorial F-layer peak height variation and modeled upward drift of Fejer and Scherliess [1997. Empirical models of storm time equatorial electric fields. Journal of Geophysical Research 102, 24,047\textendash24,056]. It is shown that the large positive storm effect was more pronounced in the Southern Hemisphere during the morning-noon sector on April 15 and negative phase reached to lower magnetic latitudes in the Northern Hemisphere which may be related to the asymmetry of the thermospheric condition during the storm.

Zhao, Biqiang; Wan, Weixing; Liu, Libo; Igarashi, K.; Yumoto, K.; Ning, Baiqi;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: Jan-01-2009

YEAR: 2009     DOI: 10.1016/j.jastp.2008.09.029

Magnetic storm; total electron content; Mid-low latitude

Ionospheric response to the geomagnetic storm on 13–17 April 2006 in the West Pacific region

This paper presents an investigation of geomagnetic storm effects in the equatorial and middle-low latitude F-region in the West Pacific sector during the intense geomagnetic storm on 13–17 April, 2006. The event, preceded by a minor storm, started at 2130 UT on April 13 while interplanetary magnetic field (IMF) Bz component was ready to turn southward. From 14–17 the ionosphere was characterized by a large scale enhancement in critical frequency, foF2 (4∼6MHz) and total electron content (TEC) (∼30TECU, 1TECU=1×1016el/m2) followed by a long-duration negative phase observed through the simultaneous ionospheric sounding measurements from 14 stations and GPS network along the meridian 120°E. A periodic wave structure, known as traveling ionospheric disturbances (TIDs) was observed in the morning sector during the initial phase of the storm which should be associated with the impulsive magnetospheric energy injection to the auroral. In the afternoon and nighttime, the positive phase should be caused by the combination of equatorward winds and disturbed electric fields verified through the equatorial F-layer peak height variation and modeled upward drift of Fejer and Scherliess [1997. Empirical models of storm time equatorial electric fields. Journal of Geophysical Research 102, 24,047–24,056]. It is shown that the large positive storm effect was more pronounced in the Southern Hemisphere during the morning-noon sector on April 15 and negative phase reached to lower magnetic latitudes in the Northern Hemisphere which may be related to the asymmetry of the thermospheric condition during the storm.

Zhao, Biqiang; Wan, Weixing; Liu, Libo; Igarashi, K.; Yumoto, K.; Ning, Baiqi;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on:

YEAR: 2009     DOI: https://doi.org/10.1016/j.jastp.2008.09.029

Magnetic storm; total electron content; Mid-low latitude

Ionospheric response to the geomagnetic storm on 13—17 April 2006 in the West Pacific region

Zhao, Biqiang; Wan, Weixing; Liu, Libo; Igarashi, K; Yumoto, K; Ning, Baiqi;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on:

YEAR: 2009     DOI:

2008

Features of annual and semiannual variations derived from the global ionospheric maps of total electron content

Zhao, B; Wan, W; Liu, L; Mao, T; Ren, Z; Wang, M; Christensen, AB;

Published by:       Published on:

YEAR: 2008     DOI:

Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal E$\times$ B drifts at solar maximum

Previous ground observations have revealed a correlation that exists between equatorial plasma bubbles, evening equatorial ionization anomaly (EIA), and prereversal E × B drift velocity using latitudinal arrays of ionospheric sounders, such as in the Indian and American regions. Besides the ground measurements, the space-based observations also provide a convenient way to study the global-scale variations.

Li, Guozhu; Ning, Baiqi; Liu, Libo; Zhao, Biqiang; Yue, Xinan; Su, S-Y; Venkatraman, Sarita;

Published by: Radio Science      Published on:

YEAR: 2008     DOI: 10.1029/2007RS003760

Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere

Based on the DMSP F13 Satellite observations from 1995 to 2005, the longitudinal distributions of the electron temperature (Te) and total ion density (Ni) in the sunset equatorial topside ionosphere are examined. The results suggest that the longitudinal variations of both Te and Ni exhibit obvious seasonal dependence as follows: (1) wavenumber-four longitudinal structure in equinox, (2) three peaks structure in June solstice, and (3) two peaks structure in December solstice. Moreover, the longitudinal variations of Te and Ni show significant anti-correlation, and we speculate that the longitudinal variation of Te may result from that of Ni which can control Te through the electron cooling rate. The wavenumber-four longitudinal structures of both Te and Ni in equinox may relate to the eastward propagating zonal wavenumber-3 diurnal tide (DE3), which has effect on the amplitude of the daytime zonal electric field. The longitudinal variation of Te and Ni in the two solstices may be caused both by longitudinal variation of geomagnetic declination and DE3.

Ren, Zhipeng; Wan, Weixing; Liu, Libo; Zhao, Biqiang; Wei, Yong; Yue, Xinan; Heelis, Roderick;

Published by: Geophysical Research Letters      Published on:

YEAR: 2008     DOI: https://doi.org/10.1029/2007GL032998

topside ionosphere; longitudinal variation

Prestorm enhancements in NmF2 and total electron content at low latitudes

The enhancement of electron concentrations in the ionosphere before geomagnetic storms is one of the open questions. Using ionosonde observations and total electron content (TEC) from Global Positioning System (GPS) measurements along longitude 120°E, we analyzed three low latitude pre-storm enhancement events that occurred on 21 April (day 111) 2001, 29 May (day 149) 2003, and 22 September (day 265) 2001, respectively, in the Asia/Australia sector. All three events (and other two cases on 9 August 2000 and 10 May 2002) show quite similar features. The strong prestorm enhancements during these events are simultaneously presented in foF2 and TEC and enhancements have latitudinal dependence, tending to occur at low latitudes with maxima near the northern and southern equatorial ionization anomaly (EIA) crests and depletions in the equatorial region. This is quite different from what reported by Burešová and Laštovička (2007) for middle latitudes. They found no systemic latitudinal dependence in prestorm enhancements over Europe. It is argued that solar flares are not the main drivers for the enhancements, at least for low-latitude events. Main features of low-latitude prestorm enhancements do not coincide with the solar flare effects. We postulate that the vertical plasma drift or zonal electric field is a likely cause for the low-latitude prestorm enhancements. Its existence is supported by the facts of stronger EIA, the latitudinal coverage of the enhancements as well as the lift of the F layer peak height at an equatorward station during the prestorm enhancements. Moreover, the behaviors of hmF2 at low latitudes during the prestorm enhancements may possibly be explained in terms of the coupling nature of parallel and perpendicular dynamics at low latitudes (see, e.g., Behnke and Harper, 1973; Rishbeth et al., 1978).

Liu, Libo; Wan, Weixing; Zhang, Man-Lian; Zhao, Biqiang; Ning, Baiqi;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI: https://doi.org/10.1029/2007JA012832

Ionosphere; prestorm enhancement; low latitude

Ionosphere disturbances observed throughout Southeast Asia of the superstorm of 20--22 November 2003

Ionospheric disturbances in the Southeast Asian region during the super magnetic storm of 20–22 November 2003 were investigated through an ionosonde chain and a GPS network assisted by the space-borne instruments. At early stage of the storm in the postsunset sector, large enhancements in the critical frequency of F2 layer and total electron content were observed at northern crest region of the equatorial ionization anomaly (EIA), which might be produced by both the storm meridional wind superimposed with traveling atmospheric disturbances and prompt penetration electric field (PPE). During the main phase of the storm when interplanetary magnetic field started a 12-h southward turning, equatorial ionosphere was elevated to a very high level which should be most probably caused by a long-duration PPE event. Meanwhile, at mid-low latitudes, ionosphere witnessed an initial simultaneous decrease then followed by drastic increases, which is very different from the past observations in this region (Reddy and Nishida, 1992). Combined analysis of the data from the ionosonde and other space-based measurement shows that for the present case the penetration efficiency of the interplanetary electric field (IEF) to the equatorial ionosphere was larger at night than in the daytime, which agrees with the results of Fejer et al. (2007) showing the ratios of PPE and IEF changes were highly variable with the local time. During the recovery phase, EIA was severely inhibited owing to a wind convergence and possibly because of the westward disturbance dynamo electric field.

Zhao, B; Wan, W; Tschu, K; Igarashi, K; Kikuchi, T; Nozaki, K; Watari, S; Li, G; Paxton, LJ; Liu, L; , others;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI: 10.1029/2008JA013054

Magnetic storm; Ionospheric disturbance; mid-low latitudes

Anomalous enhancement of ionospheric electron content in the Asian-Australian region during a geomagnetically quiet day

Zhao, B; Wan, W; Liu, L; Igarashi, K; Nakamura, M; Paxton, LJ; Su, S-Y; Li, G; Ren, Z;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI:

2007

Features of annual and semiannual variations derived from the global ionospheric maps of total electron content

Zhao, B.; Wan, W.; Liu, L.; Mao, T.; Ren, Z.; Wang, M.; Christensen, A.;

Published by: Annales Geophysicae      Published on: Jan-01-2007

YEAR: 2007     DOI: 10.5194/angeo-25-2513-2007



  1