Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2021

The Ionosphere at Middle and Low Latitudes Under Geomagnetic Quiet Time of December 2019

The ionospheric electron density shows remarkable day-to-day variability due to solar radiance, geomagnetic activity and lower atmosphere forcing. In this report, we investigated the ionospheric variations at middle and low latitudes during a period under geomagnetic quiet time (Kpmax = 1.7) from November 30 to December 8, 2019. During the quiescent period, the ionosphere is not undisturbed as expected in the Asian-Australian and the American sectors. Total electron content (TEC) has multiple prominent enhancements at middle and low latitudes in the two sectors, and TEC depletions also occur repeatedly in the Asian-Australian sector. The low-latitude electric fields vary significantly, which is likely to be modulated by the notably changing tides in the mesosphere and lower thermosphere region. It is worth noting that the variations of TEC and the electric fields are not consistent in the two sectors, particularly on December 4–6. Further investigation reveals that the increase in TEC depends on altitude. The TEC enhancements are mainly contributed by the altitude below 500 km in both two sectors, which indirectly reflects that the driving sources may come from the lower atmosphere. Especially, a mid-latitude band structure continuously appears at all local times in the North American sector on December 6–8, which is also mainly contributed by the altitude below 500 km.

Kuai, Jiawei; Li, Qiaoling; Zhong, Jiahao; Zhou, Xu; Liu, Libo; Yoshikawa, Akimasa; Hu, Lianhuan; Xie, Haiyong; Huang, Chaoyan; Yu, Xumin; Wan, Xin; Cui, Jun;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028964

low-latitude electric fields; the ionosphere variations in solar minimum; the ionospheric day-to-day variations; the ionospheric disturbance; the ionospheric variations; topside ionosphere

2020

Persistence of the long-duration daytime TEC enhancements at different longitudinal sectors during the August 2018 geomagnetic storm

Li, Qiaoling; Huang, Fuqing; Zhong, Jiahao; Zhang, Ruilong; Kuai, Jiawei; Lei, Jiuhou; Liu, Libo; Ren, Dexin; Ma, Han; Yoshikawa, Akimasa; , others;

Published by: Journal of geophysical research: space physics      Published on:

YEAR: 2020     DOI:

2017

The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts

In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24\ h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.

Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024637

Regional differences of the ionospheric response to the July 2012 geomagnetic storm

The July 2012 geomagnetic storm is an extreme space weather event in solar cycle 24, which is characterized by a southward interplanetary geomagnetic field lasting for about 30\ h below -10\ nT. In this work, multiple instrumental observations, including electron density from ionosondes, total electron content (TEC) from Global Positioning System, Jason-2, and Gravity Recovery and Climate Experiment, and the topside ion concentration observed by the Defense Meteorological Satellite Program spacecraft are used to comprehensively present the regional differences of the ionospheric response to this event. In the Asian-Australian sector, an intensive negative storm is detected near longitude ~120\textdegreeE on 16 July, and in the topside ionosphere the negative phase is mainly existed in the equatorial region. The topside and bottomside TEC contribute equally to the depletion in TEC, and the disturbed electric fields make a reasonable contribution. On 15 July, the positive storm effects are stronger in the Eastside than in the Westside. The topside TEC make a major contribution to the enhancement in TEC for the positive phases, showing the important role of the equatorward neutral winds. For the American sector, the equatorial ionization anomaly intensification is stronger in the Westside than in the Eastside and shows the strongest feature in the longitude ~110\textdegreeW. The combined effects of the disturbed electric fields, composition disturbances, and neutral winds cause the complex storm time features. Both the topside ion concentrations and TEC reveal the remarkable hemispheric asymmetry, which is mainly resulted from the asymmetry in neutral winds and composition disturbances.

Kuai, Jiawei; Liu, Libo; Lei, Jiuhou; Liu, Jing; Zhao, Biqiang; Chen, Yiding; Le, Huijun; Wang, Yungang; Hu, Lianhuan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023844

2015

The long-duration positive storm effects in the equatorial ionosphere over Jicamarca

The long-duration positive storm (LPS) in the equatorial regions is relatively poorly understood. In this report, we conducted a statistical analysis of the LPS effects in the equatorial ionosphere over Jicamarca (12.0\textdegreeS, 283.2\textdegreeE) in 1998\textendash2010. There are 250 geomagnetic storms (minimum Dst \< -50 nT) in 1998\textendash2010, but the ionosonde observations at Jicamarca are available only for 204 storms. A total of 46 LPSs are identified in terms of the criterion that the storm time relative deviation of peak density of F2 layer (NmF2) exceeds 25\% for more than 6 h. A salient feature is that the occurrence of LPSs tends to decay approximately exponentially on the following days after the main phase of geomagnetic storms. The ratios of the number of equatorial LPSs to that of geomagnetic storms have no obvious dependence on season and solar activity. During the daytime LPSs, the disturbed zonal electric field is mostly westward, as indicated from the geomagnetic field changes in the equatorial American region. For the nighttime LPSs, the significant uplifting of F2 layer caused by an eastward electric field is the most important feature. Therefore, the disturbed electric field should play an essential role in forming the equatorial LPSs.

Kuai, Jiawei; Liu, Libo; Liu, Jing; Zhao, Biqiang; Chen, Yiding; Le, Huijun; Wan, Weixing;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020552

ionospheric long-duration positive storms



  1