Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2022

Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT

\textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater X-ray Earth occultation sounding (XEOS) is an emerging method for measuring the neutral density in the lower thermosphere. In this paper, the X-ray Earth occultation (XEO) of the Crab Nebula is investigated using the Hard X-ray Modulation Telescope (Insight-HXMT). The pointing observation data on the 30 September 2018 recorded by the low-energy X-ray telescope (LE) of Insight-HXMT are selected and analysed. The extinction light curves and spectra during the X-ray Earth occultation process are extracted. A forward model for the XEO light curve is established, and the theoretical observational signal for light curve is predicted. The atmospheric density model is built with a scale factor to the commonly used Mass Spectrometer Incoherent Scatter Radar Extended model (MSIS) density profile within a certain altitude range. A Bayesian data analysis method is developed for the XEO light curve modelling and the atmospheric density retrieval. The posterior probability distribution of the model parameters is derived through the Markov chain–Monte Carlo (MCMC) algorithm with the NRLMSISE-00 model and the NRLMSIS 2.0 model as basis functions, and the respective best-fit density profiles are retrieved. It is found that in the altitude range of 105–200 km, the retrieved density profile is 88.8 \% of the density of NRLMSISE-00 and 109.7 \% of the density of NRLMSIS 2.0 by fitting the light curve in the energy range of 1.0–2.5 keV based on the XEOS method. In the altitude range of 95–125 km, the retrieved density profile is 81.0 \% of the density of NRLMSISE-00 and 92.3 \% of the density of NRLMSIS 2.0 by fitting the light curve in the energy range of 2.5–6.0 keV based on the XEOS method. In the altitude range of 85–110 km, the retrieved density profile is 87.7 \% of the density of NRLMSISE-00 and 101.4 \% of the density of NRLMSIS 2.0 by fitting the light curve in the energy range of 6.0–10.0 keV based on the XEOS method. Goodness-of-fit testing is carried out for the validation of the results. The measurements of density profiles are compared to the NRLMSISE-00 and NRLMSIS 2.0 model simulations and the previous retrieval results with NASA s Rossi X-ray Timing Explorer (RXTE) satellite. For further confirmation, we also compare the measured density profile to the ones by a standard spectrum retrieval method with an iterative inversion technique. Finally, we find that the retrieved density profile from Insight-HXMT based on the NRLMSISE-00 and NRLMSIS 2.0 models is qualitatively consistent with the previous retrieved results from RXTE. The results of light curve fitting and standard energy spectrum fitting are in good agreement. This research provides a method for the evaluation of the density profiles from MSIS model predictions. This study demonstrates that the XEOS from the X-ray astronomical satellite Insight-HXMT can provide an approach for the study of the upper atmosphere. The Insight-HXMT satellite can join the family of the XEOS. The Insight-HXMT satellite with other X-ray astronomical satellites in orbit can form a space observation network for XEOS in the future.\textless/p\textgreater

Yu, Daochun; Li, Haitao; Li, Baoquan; Ge, Mingyu; Tuo, Youli; Li, Xiaobo; Xue, Wangchen; Liu, Yaning; Wang, Aoying; Zhu, Yajun; Luo, Bingxian;

Published by: Atmospheric Measurement Techniques      Published on: may

YEAR: 2022     DOI: 10.5194/amt-15-3141-2022

2021

The distribution characteristics of GPS cycle slip over the China mainland and adjacent region during the declining solar activity (2015--2018) period of solar cycle 24

The Global Positioning System (GPS) cycle slip has a marked impact on the application of communication and navigation systems and therefore is one of the main concerns of the user and designer of terminal systems. In this study, we analyzed the temporal and spatial characteristics of cycle slip events using the GPS data detected from 260 observations in the China sector during the period of the year 2015–2018. The results show that the temporal variations of cycle slips are dependent on the local time, seasons, and solar activity. It occurs from 20:00 LT to midnight and more frequently in the equinox months, especially in solar maximum years. The spatial distribution occurs mainly at southern sector below 25°N, which should be associated with the solar condition and ionospheric irregularities in the equatorial region, and the case analyses reveal that the variation of cycle slips has a similar tendency with the ionospheric scintillation monitored at low-latitude station Guangzhou explaining this relationship. Our results reflect the performance of the GPS signals monitored in the China area during the declining period of solar activity to some degree.

Geng, Wei; Huang, Wengeng; Liu, Guoqi; Liu, Siqing; Luo, Binxian; Chen, Yanhong;

Published by: Radio Science      Published on: may

YEAR: 2021     DOI: 10.1029/2020RS007196

Monitoring; Delays; Global positioning system; Indexes; Receivers; Satellite broadcasting; Signal to noise ratio

Global Effects of a Polar Solar Eclipse on the Coupled Magnetosphere-Ionosphere System

It is well-known that solar eclipses can significantly impact the ionosphere and thermosphere, but how an eclipse influences the magnetosphere-ionosphere system is still unknown. Using a coupled magnetosphere-ionosphere-thermosphere model, we examined the impact on geospace of the northern polar-region eclipse that occurred on June 10, 2021. The simulations reveal that the eclipse-induced reduction in polar ionospheric conductivity causes large changes in field-aligned current, cross-polar cap potential and auroral activity. While such effects are expected in the northern hemisphere where solar obscuration occurred, they also occurred in the southern hemisphere through electrodynamic coupling. Eclipse-induced changes in monoenergetic auroral precipitation differ significantly between the northern hemisphere and southern hemisphere while diffuse auroral precipitation is interhemispherically symmetric. This study demonstrates that the geospace response to a polar-region solar eclipse is not limited just to the eclipse region but has global implications.

Chen, Xuetao; Dang, Tong; Zhang, Binzheng; Lotko, William; Pham, Kevin; Wang, Wenbin; Lin, Dong; Sorathia, Kareem; Merkin, Viacheslav; Luan, Xiaoli; Dou, Xiankang; Luo, Bingxian; Lei, Jiuhou;

Published by: Geophysical Research Letters      Published on:

YEAR: 2021     DOI: 10.1029/2021GL096471

auroral activity; magnetosphere-ionosphere coupling; polar solar eclipse

Interaction Between an EMSTID and an EPB in the EIA Crest Region Over China

Few observations investigated the interaction between an electrical medium-scale traveling ionospheric disturbance (EMSTID) and an equatorial plasma bubble (EPB). This paper presents another interaction between a southwestward propagating EMSTID and an eastward drifting EPB in the equatorial ionization anomaly (EIA) crest region of China. When the EMSTID and the EPB touched each other, several depletions of the EMSTID (EPB) showed the eastward (westward) velocity disturbances of the EPB (EMSTID) depletions. Besides, phase elongations of the EPB depletions contrarotated as the EMSTID propagated southwestward. However, of important finding is that the interaction of the EMSTID and the EPB could have polarized one depletion of the postmidnight EPB that should have become a fossilized bubble. Inside that polarized EPB depletion were meter-scale irregularities that caused activated radar echoes and enhanced ranged spread F (RSF). The interaction occurred in descending ionosphere and the lower density regions got filled up with an enhanced density plasma. We propose that the EMSTID and the EPB could have electrically coupled with each other, causing an enhanced polarization electric field (PEF) that polarized that EPB depletion; the E × B gradient drift instability (Kelley, 1989) could have caused the meter-scale irregularities when that enhanced PEF was imposed on that reactivated EPB depletion surrounded by that enhanced density plasma. This study provides observational evidence that how an electrical couple of EMSTID and EPB events can activate a postmidnight EPB depletion that should become a fossilized structure.

Sun, Longchang; Xu, JiYao; Zhu, Yajun; Xiong, Chao; Yuan, Wei; Wu, Kun; Hao, Yongqiang; Chen, Gang; Yan, Chunxiao; Wang, Zhihua; Zhao, Xiukuan; Luo, Xiaomin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA029005

airglow; EIA crest region; Interaction between MSTID and EPB; Nighttime plasma density enhancement; Polarization of postmidnight EPB; VHF radar echoes and range spread F

2015

Characteristics of ionospheric north-south asymmetry and their relationship with irregularity

Using the empirical ionospheric model, the flux-tube integrated electron density and the ratio between the F-region Pedersen conductivity and the total E- and F-region Pedersen conductivity are calculated to investigate the characteristics of the ionospheric asymmetry after sunset during a solar cycle. Furthermore, two indices representing the asymmetric strength of the parameters respectively are defined to study its relationship with the occurrences of the irregularities during different seasons and with different solar activities. The results indicate that the electron density and the Pedersen conductivity ratio show north-south remarkable hemispheric asymmetry at different solar energy levels. The asymmetric strengths represent the dependence on seasons and solar activities, and their variation depending on seasons and solar activities show a negative correlation with the occurrences of the equatorial irregularities and also have a negative relation with the linear growth rate of the generalized Rayleigh-Taylor instability.

Luo, Weihua; Zhu, Zhengping; Lan, Jiaping; Li, Xuejing;

Published by: Wuhan University Journal of Natural Sciences      Published on: 06/2015

YEAR: 2015     DOI: 10.1007/s11859-015-1088-7

asymmetry; Electron density; Ionosphere; irregularity; Pedersen conductivity

2008

GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea

The ionospheric F2-layer peak density (NmF2) and its height (hmF2) are of great influence on the shape of the ionospheric electron density profile Ne (h) and may be indicative of other physical processes within the ionosphere, especially those due to geomagnetic storms. Such parameters are often estimated using models such as the semiempirical international reference ionosphere (IRI) models or are measured using moderately priced to expensive instrumentation, such as ionosondes or incoherent scatter radars. Global positioning system (GPS) observations have become a powerful tool for mapping high-resolution ionospheric structures, which can be used to study the ionospheric response to geomagnetic storms. In this paper, we describe how 3-D ionospheric electron density profiles were produced from data of the dense permanent Korean GPS network using the tomography reconstruction technique. These profiles are verified by independent ionosonde data. The responses of GPS-derived parameters at the ionospheric F2-layer to the 20th November 2003 geomagnetic storm over South Korea are investigated. A fairly large increase in the electron density at the F2-layer peak (the NmF2) (positive storm) has been observed during this storm, which is accompanied by a significant uplift in the height of the F2 layer peak (the hmF2). This is confirmed by independent ionosonde observations. We suggest that the F2-layer peak height uplift and NmF2 increase are mainly associated with a strong eastward electric field, and are not associated with the increase of the O/N2 ratio obtained from the GUVI instruments aboard the TIMED satellite. It is also inferred that the increase in NmF2 is not caused by the changes in neutral composition, but is related to other nonchemical effects, such as dynamical changes of vertical ion motions induced by winds and E\ \texttimes\ B drifts, tides and waves in the mesosphere/lower thermosphere region, which can be dynamically coupled upward to generate ionospheric perturbations and oscillations.

Jin, Shuanggen; Luo, O.; Park, P.;

Published by: Journal of Geodesy      Published on: 03/2008

YEAR: 2008     DOI: 10.1007/s00190-008-0217-x

F2-layer; geomagnetic storm; GPS; Ionosphere; Tomography



  1