Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Global Effects of a Polar Solar Eclipse on the Coupled Magnetosphere-Ionosphere System



AuthorChen, Xuetao; Dang, Tong; Zhang, Binzheng; Lotko, William; Pham, Kevin; Wang, Wenbin; Lin, Dong; Sorathia, Kareem; Merkin, Viacheslav; Luan, Xiaoli; Dou, Xiankang; Luo, Bingxian; Lei, Jiuhou;
Keywordsauroral activity; magnetosphere-ionosphere coupling; polar solar eclipse
AbstractIt is well-known that solar eclipses can significantly impact the ionosphere and thermosphere, but how an eclipse influences the magnetosphere-ionosphere system is still unknown. Using a coupled magnetosphere-ionosphere-thermosphere model, we examined the impact on geospace of the northern polar-region eclipse that occurred on June 10, 2021. The simulations reveal that the eclipse-induced reduction in polar ionospheric conductivity causes large changes in field-aligned current, cross-polar cap potential and auroral activity. While such effects are expected in the northern hemisphere where solar obscuration occurred, they also occurred in the southern hemisphere through electrodynamic coupling. Eclipse-induced changes in monoenergetic auroral precipitation differ significantly between the northern hemisphere and southern hemisphere while diffuse auroral precipitation is interhemispherically symmetric. This study demonstrates that the geospace response to a polar-region solar eclipse is not limited just to the eclipse region but has global implications.
Year of Publication2021
JournalGeophysical Research Letters
Volume48
Number of Pagese2021GL096471
Section
Date Published
ISBN
URLhttps://onlinelibrary.wiley.com/doi/abs/10.1029/2021GL096471
DOI10.1029/2021GL096471