Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Modeling storm-time electrodynamics of the low-latitude ionosphere–thermosphere system: Can long lasting disturbance electric fields be accounted for?



AuthorMaruyama, Naomi; Sazykin, Stanislav; Spiro, Robert; Anderson, David; Anghel, Adela; Wolf, Richard; Toffoletto, Frank; Fuller-Rowell, Timothy; Codrescu, Mihail; Richmond, Arthur; Millward, George;
KeywordsMagnetosphere–ionosphere–thermosphere coupling; Ionospheric electrodynamics; low-latitude ionosphere; Penetration electric fields; disturbance dynamo electric fields; Numerical modeling
AbstractStorm-time ionospheric disturbance electric fields are studied for two large geomagnetic storms, March 31, 2001 and April 17–18, 2002, by comparing low-latitude observations of ionospheric plasma drifts with results from numerical simulations based on a combination of first-principles models. The simulation machinery combines the Rice convection model (RCM), used to calculate inner magnetospheric electric fields, and the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model, driven, in part, by RCM-computed electric fields. Comparison of model results with measured or estimated low-latitude vertical drift velocities (zonal electric fields) shows that the coupled model is capable of reproducing measurements under a variety of conditions. In particular, our model results suggest, from theoretical grounds, a possibility of long-lasting penetration of magnetospheric electric fields to low latitudes during prolonged periods of enhanced convection associated with southward-directed interplanetary magnetic field, although the model probably overestimates the magnitude and duration of such penetration during extremely disturbed conditions. During periods of moderate disturbance, we found surprisingly good overall agreement between model predictions and data, with penetration electric fields accounting for early main phase changes and oscillations in low-latitude vertical drift, while the disturbance dynamo mechanism becomes increasingly important later in the modeled events. Discrepancies between the model results and the observations indicate some of the difficulties in validating these combined numerical models, and the limitations of the available experimental data.
Year of Publication2007
JournalJournal of Atmospheric and Solar-Terrestrial Physics
Volume69
Number of Pages1182-1199
Section
Date Published
ISBN
URLhttps://www.sciencedirect.com/science/article/pii/S1364682607000673
DOIhttps://doi.org/10.1016/j.jastp.2006.08.020