Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

PROBA2 LYRA Occultations: Thermospheric Temperature and Composition, Sensitivity to EUV Forcing, and Comparisons With Mars

A method for retrieving temperature and composition from 150 to 350 km in Earth s thermosphere using total number density measurements made via extreme ultraviolet (EUV) solar occultations by the Project for OnBoard Autonomy 2/Large Yield Radiometer (PROBA2/LYRA) instrument is presented. Systematic and random uncertainties are calculated and found to be less than 5\% for the temperature measurements and 5\%–20\% for the composition measurements. Regression coefficients relating both temperature and the [O]/[N2] abundance ratio with EUV irradiance at 150, 275, and 350 km are reported. Additionally, it is shown that the altitude where [O] equals [N2] decreases with increasing solar EUV irradiance, an effect attributed to thermal expansion. Temperatures from 2010 to 2017 are compared with estimates from the MSIS empirical model and show good agreement at the dawn terminator but LYRA is markedly cooler at the dusk terminator, with the MSIS-LYRA temperature difference increasing with solar activity. Anthropogenic cooling can explain this discrepancy at periods of lower solar activity, but the divergence of temperature with increasing solar activity remains unexplained. LYRA measurements of the exospheric temperature sensitivity to EUV irradiance are compared with contemporaneous measurements made at Mars, showing that the exospheric temperature at Mars is approximately half as sensitive to EUV variability as that of Earth.

Thiemann, Edward; Dominique, Marie;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029262

comparative planetology; EUV; occultations; space weather; thermosphere

2017

Vertical Thermospheric Density Profiles From EUV Solar Occultations Made by PROBA2 LYRA for Solar Cycle 24

A new data set of summed neutral N2 and O number density profiles, spanning altitudes between 150 and 400\ km, and observed during Northern Winter from 2010 to 2016 is presented. The neutral density profiles are derived from solar occultation measurements made by the 0.1\textendash20\ nm Zr channel on the Large Yield Radiometer (LYRA) instrument on board Project for Onboard Autonomy 2 (PROBA2). The climatology derived from the vertical profiles is consistent with that predicted by the NRLMSISE-00 model, and the systematic error and random uncertainty of the measurements are less than 13\% and 6\%, respectively. The density profiles are used to characterize the response of thermospheric density to solar EUV irradiance variability. Peak correlation coefficients between neutral density and EUV irradiance occur near 300\ km at the dusk terminator and 220\ km at the dawn terminator. Density variability is higher at dawn than it is at dusk, and temperature variability increases with increasing altitude at both terminators.

Thiemann, E.; Dominique, M.; Pilinski, M.; Eparvier, F.;

Published by: Space Weather      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017SW001719



  1