Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2021

Ionospheric response to solar and magnetospheric protons during January 15–22, 2005: EAGLE whole atmosphere model results

We present an analysis of the ionosphere and thermosphere response to Solar Proton Events (SPE) and magnetospheric proton precipitation in January 2005, which was carried out using the model of the entire atmosphere EAGLE. The ionization rates for the considered period were acquired from the AIMOS (Atmospheric Ionization Module Osnabrück) dataset. For numerical experiments, we applied only the proton-induced ionization rates of that period, while all the other model input parameters, including the electron precipitations, corresponded to the quiet conditions. In January 2005, two major solar proton events with different energy spectra and proton fluxes occurred on January 17 and January 20. Since two geomagnetic storms and several sub-storms took place during the considered period, not only solar protons but also less energetic magnetospheric protons contributed to the calculated ionization rates. Despite the relative transparency of the thermosphere for high-energy protons, an ionospheric response to the SPE and proton precipitation from the magnetotail was obtained in numerical experiments. In the ionospheric E layer, the maximum increase in the electron concentration is localized at high latitudes, and at heights of the ionospheric F2 layer, the positive perturbations were formed in the near-equatorial region. An analysis of the model-derived results showed that changes in the ionospheric F2 layer were caused by a change in the neutral composition of the thermosphere. We found that in the recovery phase after both solar proton events and the enhancement of magnetospheric proton precipitations associated with geomagnetic disturbances, the TEC and electron density in the F region and in topside ionosphere/plasmasphere increase at low- and mid-latitudes due to an enhancement of atomic oxygen concentration. Our results demonstrate an important role of magnetospheric protons in the formation of negative F-region ionospheric storms. According to our results, the topside ionosphere/plasmasphere and bottom-side ionosphere can react to solar and magnetospheric protons both with the same sign of disturbances or in different way. The same statement is true for TEC and foF2 disturbances. Different disturbances of foF2 and TEC at high and low latitudes can be explained by topside electron temperature disturbances.

Bessarab, F.; Sukhodolov, T.; Klimenko, M.; Klimenko, V.; Korenkov, Yu.; Funke, B.; Zakharenkova, I.; Wissing, J.; Rozanov, E.;

Published by: Advances in Space Research      Published on: jan

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.026

Ionosphere; Proton precipitations; Solar proton events; thermosphere; Whole atmosphere model

Ionospheric response to solar and magnetospheric protons during January 15—22, 2005: EAGLE whole atmosphere model results

We present an analysis of the ionosphere and thermosphere response to Solar Proton Events (SPE) and magnetospheric proton precipitation in January 2005, which was carried out

Bessarab, Fedor; Sukhodolov, Timofei; Klimenko, Maxim; Klimenko, Vladimir; Korenkov, Yu; Funke, Bernd; Zakharenkova, Irina; Wissing, Jan; Rozanov, EV;

Published by: Advances in Space Research      Published on:

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.026

2016

Auroral precipitation and descent of thermospheric NO

Kühl, Sven; Espy, Patrick; Hibbins, Robert; Paxton, Larry; Funke, Bernd;

Published by: 41st COSPAR Scientific Assembly      Published on:

YEAR: 2016     DOI:

2014

Hemispheric distributions and interannual variability of NO y produced by energetic particle precipitation in 2002-2012

We investigate the interannual variability and hemispheric differences of reactive odd nitrogen produced by energetic particle precipitation (EPP-NOy) and transported into the stratosphere and lower mesosphere during polar winters in 2002\textendash2012. For this purpose, EPP-NOy amounts derived from observations of the Michelson Interferometer for Passive Atmospheric Sounding by means of a tracer correlation method have been used. Southern hemispheric (SH) seasonal maximum EPP-NOy amounts transported below the 0.02 hPa level range from 0.5GM to 2.5GM in the 2009 and 2003 winters, respectively. Northern hemispheric (NH) amounts were typically 2\textendash5 times smaller, with the exception of the 2003/2004 winter. This interhemispheric asymmetry is primarily caused by a reduction of the mesospheric descent rates in NH midwinter, as opposed to the SH. Hemispherically integrated NOy fluxes through given pressure levels reach up to 0.07GM/day at 0.1 hPa. A multilinear regression of the EPP-NOy evolution to the Ap index of the preceding months indicates that a large fraction of the SH interannual variability of EPP-NOy (excluding direct contributions by solar protons) can be linked to geomagnetic activity variations. This relationship holds throughout the winter and at all vertical levels where EPP-NOy is present. In the NH, a similar correlation is found until midwinter, however, breaking down afterward above 2 hPa in years with elevated stratopause occurrence. As an exception, EPP-NOy amounts in the Arctic winter 2004/2005 were much higher than in other NH winters with similar geomagnetic activity. We attribute this behavior to the unusually stable polar vortex in that winter, otherwise typical for the SH.

Funke, B.; opez-Puertas, M.; Holt, L.; Randall, C.; Stiller, G.; von Clarmann, T.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JD022423

2005

Energy transport in the thermosphere during the solar storms of April 2002

Mlynczak, Martin; Martin-Torres, Javier; Crowley, Geoff; Kratz, David; Funke, Bernd; Lu, Gang; Lopez-Puertas, Manuel; Russell, James; Kozyra, Janet; Mertens, Chris; Sharma, Ramesh; Gordley, Larry; Picard, Richard; Winick, Jeremy; Paxton, L.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2005

YEAR: 2005     DOI: 10.1029/2005JA011141

2003

The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002

The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment on the Thermosphere-Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite observed the infrared radiative response of the thermosphere to the solar storm events of April 2002. Large radiance enhancements were observed at 5.3 μm, which are due to emission from the vibration-rotation bands of nitric oxide (NO). The emission by NO is indicative of the conversion of solar energy to infrared radiation within the atmosphere and represents a \textquotedblleftnatural thermostat\textquotedblright by which heat and energy are efficiently lost from the thermosphere to space and to the lower atmosphere. We describe the SABER observations at 5.3 μm and their interpretation in terms of energy loss. The infrared enhancements remain only for a few days, indicating that such perturbations to the thermospheric state, while dramatic, are short-lived.

Mlynczak, Marty; Martin-Torres, F.; Russell, J.; Beaumont, K.; Jacobson, S.; Kozyra, J.; opez-Puertas, M.; Funke, B.; Mertens, C.; Gordley, L.; Picard, R.; Winick, J.; Wintersteiner, P.; Paxton, L.;

Published by: Geophysical Research Letters      Published on: 03/2003

YEAR: 2003     DOI: 10.1029/2003GL017693

The natural thermostat of nitric oxide emission at 5.3 $\mu$m in the thermosphere observed during the solar storms of April 2002

Mlynczak, Marty; Martin-Torres, Javier; Russell, James; Beaumont, Ken; Jacobson, Steven; Kozyra, Janet; Lopez-Puertas, Manuel; Funke, Bernd; Mertens, Christopher; Gordley, Larry; , others;

Published by: Geophysical Research Letters      Published on:

YEAR: 2003     DOI:



  1