Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

The Delayed Ionospheric Response to the 27-day Solar Rotation Period Analyzed With GOLD and IGS TEC Data

The delayed ionospheric response is analyzed for two well-defined 27-day solar rotation periods in the year 2019 with solar radio flux index F10.7 and Global-scale Observations of the Limb and Disk (GOLD) data, like solar extreme ultraviolet (EUV) flux proxy, O/N2 column density ratio and peak electron density, as well as International Global Navigation Satellite System Service rapid high-rate total electron content (TEC) map data. Although the correlation between GOLD solar EUV flux proxy and TEC is similar to the correlation between F10.7 and TEC, it is shown that the estimated delays based on GOLD data are in much better agreement with recent studies using EUV measurements compared to the delays based on F10.7 data. The GOLD peak electron density correlates well with TEC and allows insight to a local time interval when the ionosphere is not controlled by solar activity changes (17:00 LT to 21:00 LT). The present study investigates the impact of the solar activity (F10.7, GOLD EUV flux proxy) and O/N2 column density ratio on the ionospheric delay for two representative solar rotation periods. The capabilities of GOLD data for future research on the ionospheric response to the 27-day solar rotation period are demonstrated and discussed. These results are crucial information for precise ionospheric models and forecasts.

Schmölter, Erik; Berdermann, Jens; Codrescu, Mihail;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028861

Ionosphere; solar proxies; time delay; total electron content

2018

Ionospheric response to solar EUV variations: Preliminary results

We investigate the ionospheric response to solar Extreme Ultraviolet (EUV) variations using different proxies, based on solar EUV spectra observed from the Solar Extreme Ultraviolet Experiment (SEE) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, the F10.7 index (solar irradiance at 10.7cm), and the Bremen composite Mg-II index during January 2003 to December 2016. The daily mean solar proxies are compared with global mean Total Electron Content (GTEC) values calculated from global IGS TEC maps. The preliminary analysis shows a significant correlation between GTEC and both the integrated flux from SEE and the Mg II index, while F10.7 correlates less strongly with GTEC. The correlations of EUV proxies and GTEC at different time periods are presented. An ionospheric delay in GTEC is observed at the 27 days solar rotation period with the time scale of about \~ 1\textendash2 days. An experiment with the physics based global 3-D Coupled Thermosphere/Ionosphere Plasmasphere electrodynamics (CTIPe) numerical model was performed to reproduce the ionospheric delay. Model simulations were performed for different values of the F10.7 index while keeping all the other model inputs constant. Preliminary results qualitatively reproduce the observed \~ 1\textendash2 days delay in GTEC, which is might be due to vertical transport processes.

Vaishnav, Rajesh; Jacobi, Christoph; Berdermann, Jens; Schmölter, Erik; Codrescu, Mihail;

Published by: Advances in Radio Science      Published on: 09/2018

YEAR: 2018     DOI: 10.5194/ars-16-157-2018



  1