Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2020

Correction to: Ionospheric response to the 25-26 August 2018 intense geomagnetic storm

Vaishnav, Rajesh; Jacobi, Christoph;

Published by:       Published on:

YEAR: 2020     DOI:

Ionospheric response to the 25-26 August 2018 intense geomagnetic storm

Vaishnav, Rajesh; Jacobi, Christoph;

Published by:       Published on:

YEAR: 2020     DOI:

2018

Ionospheric response to solar EUV variations: Preliminary results

We investigate the ionospheric response to solar Extreme Ultraviolet (EUV) variations using different proxies, based on solar EUV spectra observed from the Solar Extreme Ultraviolet Experiment (SEE) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, the F10.7 index (solar irradiance at 10.7cm), and the Bremen composite Mg-II index during January 2003 to December 2016. The daily mean solar proxies are compared with global mean Total Electron Content (GTEC) values calculated from global IGS TEC maps. The preliminary analysis shows a significant correlation between GTEC and both the integrated flux from SEE and the Mg II index, while F10.7 correlates less strongly with GTEC. The correlations of EUV proxies and GTEC at different time periods are presented. An ionospheric delay in GTEC is observed at the 27 days solar rotation period with the time scale of about \~ 1\textendash2 days. An experiment with the physics based global 3-D Coupled Thermosphere/Ionosphere Plasmasphere electrodynamics (CTIPe) numerical model was performed to reproduce the ionospheric delay. Model simulations were performed for different values of the F10.7 index while keeping all the other model inputs constant. Preliminary results qualitatively reproduce the observed \~ 1\textendash2 days delay in GTEC, which is might be due to vertical transport processes.

Vaishnav, Rajesh; Jacobi, Christoph; Berdermann, Jens; Schmölter, Erik; Codrescu, Mihail;

Published by: Advances in Radio Science      Published on: 09/2018

YEAR: 2018     DOI: 10.5194/ars-16-157-2018

2015

Where does the Thermospheric Ionospheric GEospheric Research (TIGER) Program go?

At the 10th Thermospheric Ionospheric GEospheric Research (TIGER/COSPAR) symposium held in Moscow in 2014 the achievements from the start of TIGER in 1998 were summarized. During that period, great progress was made in measuring, understanding, and modeling the highly variable UV-Soft X-ray (XUV) solar spectral irradiance (SSI), and its effects on the upper atmosphere. However, after more than 50years of work the radiometric accuracy of SSI observation is still an issue and requires further improvement. Based on the extreme ultraviolet (EUV) data from the SOLAR/SolACES, and SDO/EVE instruments, we present a combined data set for the spectral range from 16.5 to 105.5nm covering a period of 3.5years from 2011 through mid of 2014. This data set is used in ionospheric modeling of the global Total Electron Content (TEC), and in validating EUV SSI modeling. For further investigations the period of 3.5years is being extended to about 12years by including data from SOHO/SEM and TIMED/SEE instruments. Similarly, UV data are used in modeling activities. After summarizing the results, concepts are proposed for future real-time SSI measurements with in-flight calibration as experienced with the ISS SOLAR payload, for the development of a space weather camera for observing and investigating space weather phenomena in real-time, and for providing data sets for SSI and climate modeling. Other planned topics are the investigation of the relationship between solar EUV/UV and visible/near-infrared emissions, the impact of X-rays on the upper atmosphere, the development of solar EUV/UV indices for different applications, and establishing a shared TIGER data system for EUV/UV SSI data distribution and real-time streaming, also taking into account the achievements of the FP7 SOLID (First European SOLar Irradiance Data Exploitation) project. For further progress it is imperative that coordinating activities in this special field of solar–terrestrial relations and solar physics is emphasized.

Schmidtke, G.; Avakyan, S.V.; Berdermann, J.; Bothmer, V.; Cessateur, G.; Ciraolo, L.; Didkovsky, L.; de Wit, Dudok; Eparvier, F.G.; Gottwald, A.; Haberreiter, M.; Hammer, R.; Jacobi, Ch.; Jakowski, N.; Kretzschmar, M.; Lilensten, J.; Pfeifer, M.; Radicella, S.M.; Schäfer, R.; Schmidt, W.; Solomon, S.C.; Thuillier, G.; Tobiska, W.K.; Wieman, S.; Woods, T.N.;

Published by: Advances in Space Research      Published on:

YEAR: 2015     DOI: https://doi.org/10.1016/j.asr.2015.07.043

UV/EUV solar spectral irradiance; Instrumentation; Calibration; Modeling



  1