Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2015

Where does the Thermospheric Ionospheric GEospheric Research (TIGER) Program go?

At the 10th Thermospheric Ionospheric GEospheric Research (TIGER/COSPAR) symposium held in Moscow in 2014 the achievements from the start of TIGER in 1998 were summarized. During that period, great progress was made in measuring, understanding, and modeling the highly variable UV-Soft X-ray (XUV) solar spectral irradiance (SSI), and its effects on the upper atmosphere. However, after more than 50years of work the radiometric accuracy of SSI observation is still an issue and requires further improvement. Based on the extreme ultraviolet (EUV) data from the SOLAR/SolACES, and SDO/EVE instruments, we present a combined data set for the spectral range from 16.5 to 105.5nm covering a period of 3.5years from 2011 through mid of 2014. This data set is used in ionospheric modeling of the global Total Electron Content (TEC), and in validating EUV SSI modeling. For further investigations the period of 3.5years is being extended to about 12years by including data from SOHO/SEM and TIMED/SEE instruments. Similarly, UV data are used in modeling activities. After summarizing the results, concepts are proposed for future real-time SSI measurements with in-flight calibration as experienced with the ISS SOLAR payload, for the development of a space weather camera for observing and investigating space weather phenomena in real-time, and for providing data sets for SSI and climate modeling. Other planned topics are the investigation of the relationship between solar EUV/UV and visible/near-infrared emissions, the impact of X-rays on the upper atmosphere, the development of solar EUV/UV indices for different applications, and establishing a shared TIGER data system for EUV/UV SSI data distribution and real-time streaming, also taking into account the achievements of the FP7 SOLID (First European SOLar Irradiance Data Exploitation) project. For further progress it is imperative that coordinating activities in this special field of solar–terrestrial relations and solar physics is emphasized.

Schmidtke, G.; Avakyan, S.V.; Berdermann, J.; Bothmer, V.; Cessateur, G.; Ciraolo, L.; Didkovsky, L.; de Wit, Dudok; Eparvier, F.G.; Gottwald, A.; Haberreiter, M.; Hammer, R.; Jacobi, Ch.; Jakowski, N.; Kretzschmar, M.; Lilensten, J.; Pfeifer, M.; Radicella, S.M.; Schäfer, R.; Schmidt, W.; Solomon, S.C.; Thuillier, G.; Tobiska, W.K.; Wieman, S.; Woods, T.N.;

Published by: Advances in Space Research      Published on:

YEAR: 2015     DOI: https://doi.org/10.1016/j.asr.2015.07.043

UV/EUV solar spectral irradiance; Instrumentation; Calibration; Modeling

2013

Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

Tobiska, W; Knipp, DJ; Burke, WJ; Bouwer, D; Bailey, JJ; Hagan, MP; Didkovsky, LV; Garrett, HB; Bowman, BR; Gannon, JL; , others;

Published by:       Published on:

YEAR: 2013     DOI:

2012

Extreme Ultraviolet Variability Experiment (EVE) on~the~Solar Dynamics Observatory (SDO): Overview~of~Science Objectives, Instrument Design, Data~Products, and Model Developments

The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth\textquoterights upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105\ nm with unprecedented spectral resolution (0.1\ nm), temporal cadence (ten seconds), and accuracy (20\%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37\ nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105\ nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39\ nm, and a MEGS-Photometer measures the Sun\textquoterights bright hydrogen emission at 121.6\ nm. The EVE data products include a near real-time space-weather product (Level\ 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15\ minutes. The EVE higher-level products are Level\ 2 with the solar EUV irradiance at higher time cadence (0.25\ seconds for photometers and ten seconds for spectrographs) and Level\ 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth\textquoterights ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

Woods, T.; Eparvier, F.; Hock, R.; Jones, A.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; McMullin, D.; Chamberlin, P.; Berthiaume, G.; Bailey, S.; Fuller-Rowell, T.; Sojka, J.; Tobiska, W.; Viereck, R.;

Published by: Solar Physics      Published on: 01/2012

YEAR: 2012     DOI: 10.1007/s11207-009-9487-6

EVE; SDO; Solar EUV irradiance; Space weather research

2007

Correction of SOHO CELIAS/SEM EUV measurements saturated by extreme solar flare events

Didkovsky, LV; Judge, DL; Jones, AR; Wieman, S; Tsurutani, BT; McMullin, D;

Published by: Astronomische Nachrichten: Astronomical Notes      Published on:

YEAR: 2007     DOI:

2005

The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event

Some of the most intense solar flares measured in 0.1 to 0.8 nm x-rays in recent history occurred near the end of 2003. The Nov 4 event is the largest in the NOAA records (X28) and the Oct 28 flare was the fourth most intense (X17). The Oct 29 flare was class X7. These flares are compared and contrasted to the July 14, 2000 Bastille Day (X10) event using the SOHO SEM 26.0 to 34.0 nm EUV and TIMED SEE 0.1\textendash194 nm data. High time resolution, \~30s ground-base GPS data and the GUVI FUV dayglow data are used to examine the flare-ionosphere relationship. In the 26.0 to 34.0 nm wavelength range, the Oct 28 flare is found to have a peak intensity greater than twice that of the Nov 4 flare, indicating strong spectral variability from flare-to-flare. Solar absorption of the EUV portion of the Nov 4 limb event is a possible cause. The dayside ionosphere responds dramatically (\~2.5 min 1/e rise time) to the x-ray and EUV input by an abrupt increase in total electron content (TEC). The Oct 28 TEC ionospheric peak enhancement at the subsolar point is \~25 TECU (25 \texttimes 1012 electrons/cm2) or 30\% above background. In comparison, the Nov 4, Oct 29 and the Bastille Day events have \~5\textendash7 TECU peak enhancements above background. The Oct 28 TEC enhancement lasts \~3 hrs, far longer than the flare duration. This latter ionospheric feature is consistent with increased electron production in the middle altitude ionosphere, where recombination rates are low. It is the EUV portion of the flare spectrum that is responsible for photoionization of this region. Further modeling will be necessary to fully understand the detailed physics and chemistry of flare-ionosphere coupling.

Tsurutani, B.; Judge, D.; Guarnieri, F.; Gangopadhyay, P.; Jones, A.; Nuttall, J.; Zambon, G.A.; Didkovsky, L.; Mannucci, A.J.; Iijima, B.; Meier, R.; Immel, T.J.; Woods, T.; Prasad, S.; Floyd, L.; Huba, J.; Solomon, S.; Straus, P.; Viereck, R.;

Published by: Geophysical Research Letters      Published on: 02/2005

YEAR: 2005     DOI: 10.1029/2004GL021475



  1