Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 45 entries in the Bibliography.


Showing entries from 1 through 45


2021

Features of the Ionospheric Storm on December 21--24, 2016

The purpose of this work is to investigate the response of the F region and topside ionosphere to the moderate geomagnetic storm on December 21, 2016 (Kp max = 6). The subject of the study is the height–time variations in the parameters of the ionospheric plasma over Kharkiv. Experimental data were obtained using vertical sounding and incoherent scatter methods by the ionosonde and incoherent scatter radar. The presented results are based on the correlation analysis of the incoherent scattered signal. The ion and electron temperatures, as well as the ionospheric plasma velocity, were determined from a set of measured correlation functions of the incoherently scattered signal. The electron density was calculated using the following parameters measured for a number of ionospheric heights: power of the incoherent scatter signal, ion and electron temperatures, and the electron density at the ionospheric F2 layer peak, which is calculated from the critical frequency measured by the ionosonde. The moderate geomagnetic storm was accompanied by an ionospheric storm over Kharkiv with sign-variable phases (first positive and second negative). The peak increase in the electron density was 1.8 times and decrease was 3.4 times. The negative phase was accompanied by a slight rise of the F2 layer (by 20–28 km), which could be due to a decrease in the vertical component of the plasma velocity and an increase in the electron temperature by 600–800 K and ion temperature by 100–160 K. Effects of strong negative ionospheric disturbances were registered during the subsequent magnetospheric disturbance of December 22–24, 2016, with a decrease in electron density at the F2 layer peak up to 2.5–4.9 times. The effects of negative disturbances manifested themselves in the variations of temperatures of electrons and ions. In general, the moderate magnetic storm caused significant changes in the electron density in the ionospheric F2 layer peak, which were accompanied by heating of the ionospheric plasma as well as changes in variations of the vertical component of the ionospheric plasma velocity and the height of ionization during the main phase of the magnetic storm.

Katsko, S.; Emelyanov, Ya.; Chernogor, L.;

Published by: Kinematics and Physics of Celestial Bodies      Published on: mar

YEAR: 2021     DOI: 10.3103/S0884591321020045

geomagnetic storm; Electron density; Ionospheric storm; space weather; ionosonde; electron and ion temperatures; incoherent scatter radar; plasma velocity; positive and negative storm phases

Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations

We present a joint analysis of longitude-temporal variations of ionospheric and geomagnetic parameters at middle and high latitudes in the Northern Hemisphere during the two severe magnetic storms in March and June 2015 by using data from the chains of magnetometers, ionosondes and GPS/GLONASS receivers. We identify the fixed longitudinal zones where the variability of the magnetic field is consistently high or low under quiet and disturbed geomagnetic conditions. The revealed longitudinal structure of the geomagnetic field variability in quiet geomagnetic conditions is caused by the discrepancy of the geographic and magnetic poles and by the spatial anomalies of different scales in the main magnetic field of the Earth. Variations of ionospheric parameters are shown to exhibit a pronounced longitudinal inhomogeneity with changing geomagnetic conditions. This inhomogeneity is associated with the longitudinal features of background and disturbed structure of the geomagnetic field. During the recovery phase of a storm, important role in dynamics of the mid-latitude ionosphere may belong to wave-like thermospheric disturbances of molecular gas, propagating westward for several days. Therefore, it is necessary to extend the time interval for studying the ionospheric effects of strong magnetic storms by a few days after the end of the magnetospheric source influence, while the disturbed regions in the thermosphere continues moving westward and causes the electron density decrease along the trajectories of propagation.

Chernigovskaya, M.; Shpynev, B.; Yasyukevich, A.; Khabituev, D.; Ratovsky, K.; Belinskaya, Yu.; Stepanov, A.; Bychkov, V.; Grigorieva, S.; Panchenko, V.; Kouba, D.; Mielich, J.;

Published by: Advances in Space Research      Published on: jan

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.028

Chain of GPS/GLONASS receivers; Geomagnetic field variations; geomagnetic storm; Ionosonde chain; ionospheric disturbances

2020

Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storm from the GPS/GLONASS data

Chernigovskaya, MA; Shpynev, BG; Yasyukevich, AS; Khabituev, DS;

Published by:       Published on:

YEAR: 2020     DOI:

Climatology characteristics of ionospheric irregularities described with GNSS ROTI

the Global Ultraviolet Imager (GUVI) settled on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission spacecraft. The GUVI-based model is completely

Kotulak, Kacper; Zakharenkova, Irina; Krankowski, Andrzej; Cherniak, Iurii; Wang, Ningbo; Fron, Adam;

Published by: Remote Sensing      Published on:

YEAR: 2020     DOI: 10.3390/rs12162634

First results of UV radiation measurements made by AURA detector onboard VDNH-80 cubesat

GUVI experiment data

Chernov, DV; Glinkin, EV; Klimov, PA; Murashov, AS;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2020     DOI:

2019

On the difference between real-time and research simulations with CTIPe

Understanding the thermosphere and ionosphere conditions is crucial for spacecraft operations and many applications using radio signal transmission (e.g. in communication and navigation). In this sense, physics based modelling plays an important role, since it can adequately reproduce the complex coupling mechanisms in the magnetosphere-ionosphere-thermosphere (MIT) system. The accuracy of the physics based model results does not only depend on the appropriate implementation of the physical processes, but also on the quality of the input data (forcing). In this study, we analyze the impact of input data uncertainties on the model results. We use the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics model (CTIPe), which requires satellite based solar wind, interplanetary field and hemispheric power data from ACE and TIROS/NOAA missions. To identify the impact of the forcing uncertainties, two model runs are compared against each other. The first run uses the input data that were available in real-time (operational) and the second run uses the best estimate obtained in post-processing (research or historical run).

Fernandez-Gomez, Isabel; Fedrizzi, Mariangel; Codrescu, Mihail; Borries, Claudia; Fillion, Martin; Fuller-Rowell, Timothy;

Published by: Advances in Space Research      Published on:

YEAR: 2019     DOI: 10.1016/j.asr.2019.02.028

2018

The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain

Shpynev, B.G.; Zolotukhina, N.A.; Polekh, N.M.; Ratovsky, K.G.; Chernigovskaya, M.A.; Belinskaya, A.Yu.; Stepanov, A.E.; Bychkov, V.V.; Grigorieva, S.A.; Panchenko, V.A.; Korenkova, N.A.; Mielich, J.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1016/j.jastp.2017.10.014

ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence

The International GNSS Service (IGS) has recently accepted for official release a new ionospheric product to characterize ionospheric irregularity and intensity as derived from multi-site ground-based GPS observations. This product was developed and implemented in the Space Radio-Diagnostic Research Center (SRRC), University of Warmia and Mazury. The SRRC has implemented this approach using in-house software for multi-step processing and interpretation of carrier phase delays in dual-frequency GPS signals and provides the new product to the IGS database. We used measurements with 30-s sampling rate from about 700 GPS stations located at high and middle latitudes of the Northern Hemisphere. The product represents changes in the GPS-based Rate of TEC Index (ROTI) and has a polar projection within a range of 50\textdegree\textendash90\textdegreeN in geomagnetic latitude and 00\textendash24 magnetic local time. The new service allows regular monitoring of ionospheric irregularities over the Northern Hemisphere. We demonstrate results of visualization and analysis of the IGS ROTI Maps product for representative periods with geomagnetically quiet conditions and severe geomagnetic storms in 2014\textendash2015 in order to demonstrate the performance and ability of this product to depict the development of ionospheric irregularities in the area of interest. During space weather events, the ionospheric irregularities oval, as deduced from the ROTI Maps, expands significantly in size toward midlatitudes with simultaneous increase in irregularities intensity, which can lead to degradation of the GPS precise positioning performance at lower latitudes.

Cherniak, Iurii; Krankowski, Andrzej; Zakharenkova, Irina;

Published by: GPS Solutions      Published on: 06/2018

YEAR: 2018     DOI: 10.1007/s10291-018-0730-1

Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM-X 2.0)

Key developments have been made to the NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X). Among them, the most important are the self-consistent solution of global electrodynamics, and transport of O+ in the F-region. Other ionosphere developments include time-dependent solution of electron/ion temperatures, metastable O+ chemistry, and high-cadence solar EUV capability. Additional developments of the thermospheric components are improvements to the momentum and energy equation solvers to account for variable mean molecular mass and specific heat, a new divergence damping scheme, and cooling by O(3P) fine structure. Simulations using this new version of WACCM-X (2.0) have been carried out for solar maximum and minimum conditions. Thermospheric composition, density, and temperatures are in general agreement with measurements and empirical models, including the equatorial mass density anomaly and the midnight density maximum. The amplitudes and seasonal variations of atmospheric tides in the mesosphere and lower thermosphere are in good agreement with observations. Although global mean thermospheric densities are comparable with observations of the annual variation, they lack a clear semiannual variation. In the ionosphere, the low-latitude E \texttimes B drifts agree well with observations in their magnitudes, local time dependence, seasonal, and solar activity variations. The prereversal enhancement in the equatorial region, which is associated with ionospheric irregularities, displays patterns of longitudinal and seasonal variation that are similar to observations. Ionospheric density from the model simulations reproduces the equatorial ionosphere anomaly structures and is in general agreement with observations. The model simulations also capture important ionospheric features during storms.

Liu, Han-Li; Bardeen, Charles; Foster, Benjamin; Lauritzen, Peter; Liu, Jing; Lu, Gang; Marsh, Daniel; Maute, Astrid; McInerney, Joseph; Pedatella, Nicholas; Qian, Liying; Richmond, Arthur; Roble, Raymond; Solomon, Stanley; Vitt, Francis; Wang, Wenbin;

Published by: Journal of Advances in Modeling Earth Systems      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/jame.v10.210.1002/2017MS001232

Temporal Variability of Atomic Hydrogen From the Mesopause to the Upper Thermosphere

We investigate atomic hydrogen (H) variability from the mesopause to the upper thermosphere, on time scales of solar cycle, seasonal, and diurnal, using measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite, and simulations by the National Center for Atmospheric Research Whole Atmosphere Community Climate Model-eXtended (WACCM-X). In the mesopause region (85 to 95\ km), the seasonal and solar cycle variations of H simulated by WACCM-X are consistent with those from SABER observations: H density is higher in summer than in winter, and slightly higher at solar minimum than at solar maximum. However, mesopause region H density from the Mass-Spectrometer-Incoherent-Scatter (National Research Laboratory Mass-Spectrometer-Incoherent-Scatter 00 (NRLMSISE-00)) empirical model has reversed seasonal variation compared to WACCM-X and SABER. From the mesopause to the upper thermosphere, H density simulated by WACCM-X switches its solar cycle variation twice, and seasonal dependence once, and these changes of solar cycle and seasonal variability occur in the lower thermosphere (~95 to 130\ km), whereas H from NRLMSISE-00 does not change solar cycle and seasonal dependence from the mesopause through the thermosphere. In the upper thermosphere (above 150\ km), H density simulated by WACCM-X is higher at solar minimum than at solar maximum, higher in winter than in summer, and also higher during nighttime than daytime. The amplitudes of these variations are on the order of factors of ~10, ~2, and ~2, respectively. This is consistent with NRLMSISE-00.

Qian, Liying; Burns, Alan; Solomon, Stan; Smith, Anne; McInerney, Joseph; Hunt, Linda; Marsh, Daniel; Liu, Hanli; Mlynczak, Martin; Vitt, Francis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024998

Features of High-Lat Ionospheric Irregularities Development as Revealed by Ground-Based GPS Observations, Satellite-Borne GPS Observations and Satellite In Situ Measurements over the Territory of Russia during the Geomagnetic Storm on March 17-18, 2015

The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17-18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50o - 85o N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55o MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850-900 km.

Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Klimenko, M.;

Published by: Geomagnetism and Aeronomy      Published on: 01/2018

YEAR: 2018     DOI: 10.1134/S0016793217050176

Whole Atmosphere Community Climate Model—eXtended Version 2.0 Scientific Description

Key developments have been made to the NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X). Among them the most

Liu, Han-Li; Bardeen, Charles; Foster, Benjamin; Lauritzen, Peter; Liu, Jing; Lu, Gang; Marsh, Daniel; Maute, Astrid; McInerney, Joseph; Pedatella, Nicholas; , others;

Published by:       Published on:

YEAR: 2018     DOI:

2017

MONITOR ionospheric network: two case studies on scintillation and electron content variability

The ESA MONITOR network is composed of high-frequency-sampling global navigation satellite systems (GNSS) receivers deployed mainly at low and high latitudes to study

eniguel, Yannick; Cherniak, Iurii; Garcia-Rigo, Alberto; Hamel, Pierrick; andez-Pajares, Manuel; Kameni, Roland; Kashcheyev, Anton; Krankowski, Andrzej; Monnerat, Michel; Nava, Bruno; , others;

Published by:       Published on:

YEAR: 2017     DOI: 10.5194/angeo-35-377-2017

Observations of the Weddell Sea Anomaly in the ground-based and space-borne TEC measurements

The Weddell Sea Anomaly (WSA) is a summer ionospheric anomaly, which is characterized by a greater nighttime ionospheric density than that in daytime in the region near the Weddell Sea. We investigate the WSA signatures in the ground-based TEC (vertical total electron content) by using GPS and GLONASS measurements of the dense regional GNSS networks in South America. We constructed the high-resolution regional TEC maps for December 2014–January 2015. The WSA effects of the TEC exceed the noontime values are registered starting from 17 LT, it reaches its maximum at 01–05 LT and starts to disappear after 09 LT.

Zakharenkova, Irina; Cherniak, Iurii; Shagimuratov, Irk;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on:

YEAR: 2017     DOI: 10.1016/j.jastp.2017.06.014

Studying the ionosphere response to severe geomagnetic storm in March 2015 according to Eurasian ionosonde chain

Shpynev, BG; Zolotukhina, NA; Polekh, NM; Chernigovskaya, MA; Ratovsky, KG; Belinskaya, Yu; Stepanov, AE; Bychkov, VV; Grigorieva, SA; Panchenko, VA; , others;

Published by: Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa      Published on:

YEAR: 2017     DOI:

2016

High-latitude ionospheric irregularities: differences between ground- and space-based GPS measurements during the 2015 St. Patrick\textquoterights Day storm

We present an analysis of ionospheric irregularities at high latitudes during the 2015 St. Patrick\textquoterights Day storm. Our study used measurements from\ ~2700 ground-based GPS stations and GPS receivers onboard five low earth orbit (LEO) satellites\textemdashSwarm A, B and C, GRACE and TerraSAR-X\textemdashthat had close orbit altitudes of\ ~500\ km, and the Swarm in situ plasma densities. An analysis of the rate of TEC index (ROTI) derived from LEO\textendashGPS data, together with Swarm in situ plasma probe data, allowed us to examine the topside ionospheric irregularities and to compare them to the main ionospheric storm effects observed in ground-based GPS data. We observed strong ionospheric irregularities in the topside ionosphere during the storm\textquoterights main phase that were associated with storm-enhanced density (SED) formation at mid-latitudes and further evolution of the SED plume to the polar tongue of ionization (TOI). Daily ROTI maps derived from ground-based and LEO\textendashGPS measurements show the pattern of irregularities oriented in the local noon\textendashmidnight direction, which is a signature of SED/TOI development across the polar cap region. Analysis of the Swarm in situ plasma measurements revealed that, during the storm\textquoterights main phase, all events with extremely enhanced plasma densities (\>106\ el/cm3) in the polar cap were observed in the Southern Hemisphere. When Swarm satellites crossed these enhancements, degradation of GPS performance was observed, with a sudden decrease in the number of GPS satellites tracked. Our findings indicate that polar patches and TOI structures in the topside ionosphere were predominantly observed in the Southern Hemisphere, which had much higher plasma densities than the Northern Hemisphere, where SED/TOI structures have already been reported earlier. LEO\textendashGPS data (ROTI and topside TEC) were consistent with these results.

Cherniak, Iurii; Zakharenkova, Irina;

Published by: Earth, Planets and Space      Published on: 07/2016

YEAR: 2016     DOI: 10.1186/s40623-016-0506-1

High-latitude ionospheric irregularities: differences between ground-and space-based GPS measurements during the 2015 St. Patrick’s Day storm

We present an analysis of ionospheric irregularities at high latitudes during the 2015 St. Patrick’s Day storm. Our study used measurements from ~2700 ground-based GPS stations and

Cherniak, Iurii; Zakharenkova, Irina;

Published by: Earth, Planets and Space      Published on:

YEAR: 2016     DOI: 10.1186/s40623-016-0506-1

2015

Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm

The magnetosphere substorm plays a crucial role in the solar wind energy dissipation into the ionosphere. We report on the intensity of the high-latitude ionospheric irregularities during one of the largest storms of the current solar cycle\textemdashthe St. Patrick\textquoterights Day storm of 17 March 2015. The database of more than 2500 ground-based Global Positioning System (GPS) receivers was used to estimate the irregularities occurrence and dynamics over the auroral region of the Northern Hemisphere. We analyze the dependence of the GPS-detected ionospheric irregularities on the auroral activity. The development and intensity of the high-latitude irregularities during this geomagnetic storm reveal a high correlation with the auroral hemispheric power and auroral electrojet indices (0.84 and 0.79, respectively). Besides the ionospheric irregularities caused by particle precipitation inside the polar cap region, evidences of other irregularities related to the storm enhanced density (SED), formed at mid-latitudes and its further transportation in the form of tongue of ionization (TOI) towards and across the polar cap, are presented. We highlight the importance accounting contribution of ionospheric irregularities not directly related with particle precipitation in overall irregularities distribution and intensity.

Cherniak, Iurii; Zakharenkova, Irina;

Published by: Earth, Planets and Space      Published on: 12/2015

YEAR: 2015     DOI: 10.1186/s40623-015-0316-x

Auroral hemispheric power index Auroral precipitation; geomagnetic storm; GPS; Ionosphere irregularities; ROTI

Towards estimation of atmospheric tidal effects on the ionosphere via data assimilation

The impact of atmospheric tides on the night time ionosphere is now being a subject of the extensive research within the scientific community. The plausible effect has been observed using the multiple space-borne instruments (e.g. COSMIC/FORMOSAT-3 constellation, TIMED GUVI and NASA IMAGE). Along with the observations, several modelling attempts has been undertaken to prove or refute the interrelation between the atmospheric tides and the wave-four longitudinal night time ionosphere structure. The scope of the current article is to assess the data assimilation ionosphere model capabilities in representing the longitudinal effect in the night time ionosphere induced by the DE3 atmospheric tide. Along with this, the core physics-based model capabilities in estimating the same effect are presented and discussed. For the current research, two periods were taken into consideration: the autumn equinox of the years 2006 and 2012. In the current article the data assimilation and physics-based models calculation results are presented and discussed along with the models\textquoteright error estimation and analysis.

Solomentsev, Dmitry; Cherniak, Yakov; Titov, Anton; Khattatov, Boris; Khattatov, Vyacheslav;

Published by: Advances in Space Research      Published on: 11/2015

YEAR: 2015     DOI: 10.1016/j.asr.2015.07.014

Atmosphere tides; data assimilation; Ionosphere longitudinal structure

Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick's Day storm: Ground-based GPS measurements

We report first results on the study of the high-latitude ionospheric irregularities observed in worldwide GPS data during the St. Patrick\textquoterights Day geomagnetic storm (17 March 2015). Multisite GPS observations from more than 2500 ground-based GPS stations were used to analyze the dynamics of the ionospheric irregularities in the Northern and Southern Hemispheres. The most intense ionospheric irregularities lasted for more than 24 h starting at 07 UT of 17 March. This period correlates well with an increase of the auroral Hemispheric Power index. We find hemispheric asymmetries in the intensity and spatial structure of the ionospheric irregularities. Over North America, the ionospheric irregularities zone expanded equatorward below ~45\textdegreeN geographic latitude. Additionally, the strong midlatitude and high-latitude GPS phase irregularities in the auroral oval were found to be related to the formation of storm enhanced density and deepening of the main ionospheric trough through upper atmosphere ionization by energetic particle precipitation. Significant increases in the intensity of the irregularities within the polar cap region of both hemispheres were associated with the formation and evolution of the storm enhanced density/tongue of ionization structures and polar patches.

Cherniak, Iurii; Zakharenkova, Irina; Redmon, Robert;

Published by: Space Weather      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/swe.v13.910.1002/2015SW001237

auroral precipitation; geomagnetic storm; Ionosphere; irregularities; rate of TEC

The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results

We studied the contribution of the global plasmaspheric and ionospheric electron content (PEC and IEC) into total electron content (TEC). The experimental PEC was estimated by comparison of GPS TECobservations and FORMOSAT-3/COSMIC radio occultation IEC measurements. Results are retrieved for the winter solstice (January and December 2009) conditions. Global maps of COSMIC-derived IEC, PECand GPS TEC were compared with Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) results. In addition, we used GSM TIP model results in order to estimate the contribution of plasmaspheric electron content into TEC value at the different altitudinal regions. The advantages and problems of the outer ionospheric/plasmaspheric parameters (O+/H+ transition height,TEC and electron density at height above F2 layer peak) representation by the IRI (International Reference Ionosphere) model are discussed.

Klimenko, M.V.; Klimenko, V.V.; Zakharenkova, I.E.; Cherniak, Iu.V.;

Published by: Advances in Space Research      Published on: 06/2014

YEAR: 2015     DOI: 10.1016/j.asr.2014.06.027

FORMOSAT-3/COSMIC; GPS; Numerical modeling; Plasmasphere; total electron content

Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements

Ngwira, Chigomezyo; Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Crowley, Geoff;

Published by: Geophysical Research Letters      Published on:

YEAR: 2015     DOI:

The Charged Aerosol Release Experiment (Care II) to Study Artificial Dusty Plasmas in the Upper Atmosphere

Bernhardt, Paul; Siefring, Carl; Gatling, George; , Briczinski; Vierinen, Juha; Bhatt, Asti; Holzworth, Robert; McCarthy, Michael; Gustavsson, Björn; La Hoz, Cesar; , others;

Published by:       Published on:

YEAR: 2015     DOI:

2014

Global distribution of atomic oxygen in the mesopause region as derived from SCIAMACHY O( 1 S) green line measurements

A new data set of atomic oxygen abundance in the upper mesosphere and lower thermosphere is presented. The data are derived from the nighttime atomic oxygen green line limb emission measurements of the SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) instrument on the European Environmental Satellite. The temporal coverage is October 2002 until April 2012, and the latitudinal extent is 50\textdegreeS to 80\textdegreeN at 10 P.M. local time. This data set is compared to other satellite data sets, in particular to recently published data of SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and the Mass Spectrometer and Incoherent Scatter model. SCIAMACHY atomic oxygen peak abundances are typically 3\textendash6\texttimes1011 mol/cm3 at the atomic oxygen maximum region, depending on latitude and season. These values are similar to previous values based on chemiluminescence measurements of the atomic oxygen three-body recombination reaction but at least 30\% lower than atomic oxygen abundances obtained from SABER.

Kaufmann, M.; Zhu, Y.; Ern, M.; Riese, M.;

Published by: Geophysical Research Letters      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1710.1002/2014GL060574

atomic oxygen; energy balance; mesopause; remote sensing data; SCIAMACHY

Predictions of HF system performance for propagation through disturbed ionospheres measured using low-Earth-orbit satellite radio beacon tomography

The CERTO radio beacon on the C/NOFS satellite sends VHF/UHF radio signals at 150 and 400 MHz to provide measurements of integrated electron density or Total Electron Content (TEC) by an east-west chain of ground receivers in Peru. Computerized Ionospheric Tomography (CIT) is used to convert the TEC data into two-dimensional images of electron densities with maximum 5 \texttimes 5 km resolution in Longitude-Altitude space. These images are updated every 95 min as the C/NOFS satellite passes over the receiver network in its low-latitude orbit with an inclination of 12\textdegree. The 2-D, high-resolution images of the ionosphere are used to predict the impact of equatorial plasma structures on HF propagation of radar and radio signals. Electron density measurements from the NRL radio tomography chain across Peru are used for simulations of the performance by HF one-way links. HF rays from transmitter to receiver are traced through the electron density images produced by radio beacon tomography. Eight separate paths are found between a transmitter and ground receiver separated by 2000 km. A total of 36 backscatter echoes are found with unique group delay, Doppler frequency shift, phase delay, and echo amplitude. This multipath effect explains the range and Doppler spreading of observations for HF monostatic radar propagation through F layer irregularities. This type of analysis is useful for prediction and interpretation of range and Doppler observations from HF systems including over-the-horizon and SuperDARN radars, HF Geolocation Arrays, and HF communications networks.

Bernhardt, Paul; Hei, Matthew; Siefring, Carl; Wilkens, Matthew;

Published by: Radio Science      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2014RS005409

HF communications; HF radar; radio beacon tomography

Auroral all-sky camera calibration

A two-step procedure to calibrate the spectral sensitivity to visible light of auroral all-sky cameras is outlined. Center pixel response is obtained by the use of a Lambertian surface and a

Sigernes, Fred; Holmen, SE; Biles, D; Bj\orklund, H; Chen, X; Dyrland, M; Lorentzen, DA; Baddeley, L; Trondsen, T; Brändström, U; , others;

Published by: Geoscientific Instrumentation, Methods and Data Systems      Published on:

YEAR: 2014     DOI: 10.5194/gi-3-241-2014

Mars Reconnaissance Orbiter observation of Comet C/2013 A1 (Siding Spring)

Tamppari, Leslie; Zurek, Richard; Cantor, Bruce; Delamere, WA; Egan, Anthony; Humm, David; Kass, David; McEwen, Alfred; McGovern, Andy; Phillips, Roger; , others;

Published by:       Published on:

YEAR: 2014     DOI:

Investigation of the longitudinal structure of the nighttime low-latitude ionosphere by means of assimilative modeling

Solomentsev, Dmitry; Cherniak, Yakov; Vyacheslav, Khattatov; Titov, Anton; Khattatov, Boris;

Published by: 40th COSPAR Scientific Assembly      Published on:

YEAR: 2014     DOI:

2013

Modeling of response of the thermosphere-ionosphere system to sudden stratospheric warmings of years 2008 and 2009

A study of the response of the thermosphere and ionosphere to sudden stratospheric warmings (SSWs) which occurred in January of 2008 and 2009 is presented. The Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) developed in the West Department of IZMIRAN was a theoretical basis for this study. A comparison of the simulation results of the thermosphere-ionosphere response to SSW events with the observational data over Irkutsk and also with theoretical and experimental studies carried out during the recent years is performed. SSW events were modeled by setting disturbances in the neutral temperature and density at the lower boundary of the GSM TIP model (80 km above the Earth\textquoterights surface). It is shown that the disturbances related to SSW lead to substantial global effects in the thermosphere and ionosphere. The analysis of the experimental data showed that, in spite of very similar solar and geophysical conditions on the background of which two considered stratospheric warming events happened, the occurring disturbances in temperature at heights of the mesosphere and lower thermosphere differ substantially from each other, although some common regularities still take place especially at heights of the ionospheric F region.

Klimenko, M.; Klimenko, V.; textquoterightkov, Yu.; Bessarab, F.; Karpov, I.; Ratovsky, K.; Chernigovskaya, M.;

Published by: Cosmic Research      Published on: 01/2013

YEAR: 2013     DOI: 10.1134/S001095251301005X

Simulation of the system response of the thermosphere ionosphere on FLASH stratospheric warming in 2008 and 2009

Ratovsky, KG; Chernihiv, MA;

Published by: Space Research      Published on:

YEAR: 2013     DOI:

2012

Modeling the effect of sudden stratospheric warming within the thermosphere--ionosphere system

This paper presents an investigation of thermospheric and ionospheric response to the sudden stratospheric warming (SSW) event, which took place in January 2009. This period was characterized by low solar and geomagnetic activity. Analysis was carried out within the Global Self-consistent Model of Thermosphere, Ionosphere and Protonosphere (GSM TIP). The experimental data of the atmospheric temperatures obtained by Aura satellite above Irkutsk and ionosonde data over Yakutsk and Irkutsk were utilized as well. SSW event was modeled by specifying the temperature and density perturbations at the lower boundary of the GSM TIP model (80\ km altitude). It was shown that by setting disturbances in the form of a stationary planetary perturbation s=1 at the lower boundary of the thermosphere, one could reproduce the negative electron density disturbances in the F region of ionosphere during SSW events. Our scenario for the 2009 SSW event in the GSM TIP allowed to obtain results which are in a qualitative agreement with the observation data.

Bessarab, F.S.; Korenkov, Yu.N.; Klimenko, M.V.; Klimenko, V.V.; Karpov, I.V.; Ratovsky, K.G.; Chernigovskaya, M.A.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 12/2012

YEAR: 2012     DOI: 10.1016/j.jastp.2012.09.005

Ionosphere; Modeling; sudden stratospheric warming; thermosphere

The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event

This paper presents a study of thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming (SSW) event. This period was characterized by low solar and geomagnetic activity. The study was performed using the Global Self-consistent Model of Thermosphere, Ionosphere, and Protonosphere (GSM TIP). Model results were compared with ionosonde data from Irkutsk, Kaliningrad, Sao Jose dos Campos, and Jicamarca. The SSW event was modeled by specifying the temperature and density perturbations at the lower boundary of the GSM TIP (80 km altitude). GSM TIP simulation allowed the reproduction of the lower thermosphere temperature disturbances (the occurrence of the quasi-wave 1 structure at 80\textendash130 km altitude with a vertical scale of \~40 km), the negative response of F2 region electron density and the positive response of electron temperature at 300 km during the 2008 minor SSW event. The main formation mechanism of the global ionospheric response is due to the disturbances (decrease) in then(O)/n(N2) ratio. The change in zonal electric field is another important mechanism of the ionospheric response at low latitudes.

Korenkov, Y.; Klimenko, V.; Klimenko, M.; Bessarab, F.; Korenkova, N.; Ratovsky, K.; Chernigovskaya, M.; Shcherbakov, A.; Sahai, Y.; Fagundes, P.; de Jesus, R.; de Abreu, A.; Condor, P.;

Published by: Journal of Geophysical Research      Published on: 10/2012

YEAR: 2012     DOI: 10.1029/2012JA018018

Electric field; Ionosphere; sudden stratospheric warming; thermosphere

2011

Two methods to forecast auroral displays

Sigernes, Fred; Dyrland, Margit; Brekke, P\aal; Chernouss, Sergey; Lorentzen, Dag; Oksavik, Kjellmar; Deehr, Charles;

Published by: Journal of Space Weather and Space Climate      Published on:

YEAR: 2011     DOI:

Two methods to forecast auroral displays

Sigernes, Fred; Dyrland, Margit; Brekke, P\aal; Chernouss, Sergey; Lorentzen, Dag; Oksavik, Kjellmar; Deehr, Charles;

Published by: Journal of Space Weather and Space Climate      Published on:

YEAR: 2011     DOI:

2010

NO 2 air afterglow and O and NO densities from Odin-OSIRIS night and ACE-FTS sunset observations in the Antarctic MLT region

Gattinger, R.; McDade, I.; an, A.; Boone, C.; Walker, K.; Bernath, P.; Evans, W.; Degenstein, D.; Yee, J.-H.; Sheese, P.; Llewellyn, E.;

Published by: Journal of Geophysical Research      Published on: Jan-01-2010

YEAR: 2010     DOI: 10.1029/2009JD013205

Integrating the Sun-Earth System for the Operational Environment (ISES-OE)

Lean, J.; Huba, J.; McDonald, S.; Slinker, S.; Drob, D.; Emmert, J.; Meier, R.; Picone, J.; Joyce, G.; Krall, J.; Stephan, A.; Roach, K.; Knight, H.; Plunkett, S.; Wu, C.-C.; Wood, B.; Wang, Y.-M.; Howard, R.; Chen, J.; Bernhardt, P.; Fedder, J.;

Published by:       Published on:

YEAR: 2010     DOI:

NO2 air afterglow and O and NO densities from Odin-OSIRIS night and ACE-FTS sunset observations in the Antarctic MLT region

Gattinger, RL; McDade, IC; an, AL; Boone, CD; Walker, KA; Bernath, PF; Evans, WFJ; Degenstein, DA; Yee, J-H; Sheese, P; , others;

Published by: Journal of Geophysical Research: Atmospheres      Published on:

YEAR: 2010     DOI:

LWS FST: Determine and Quantify the Responses of Atmospheric/Ionospheric Composition and Temperature to Solar XUV Spectral Variability and Energetic Particles

Talaat, Elsayed; Fuller-Rowell, Tim; Qian, Liying; Richards, Phil; Ridley, Aaron; Burns, Alan; Bernstein, Dennis; Chamberlin, Phillip; Fedrizzi, Mariangel; Hsieh, Syau-Yun; , others;

Published by: 38th COSPAR Scientific Assembly      Published on:

YEAR: 2010     DOI:

2008

Global model comparison with Millstone Hill during September 2005

A direct comparison between simulation results from the Global Ionosphere Thermosphere Model (GITM) and measurements from the Millstone Hill incoherent scatter radar (ISR) during the month of September 2005 is presented. Electron density, electron temperature, and ion temperature results are compared at two altitudes where ISR data is the most abundant. The model results are produced, first using GITM running in one dimension, which allows comparison at the Millstone Hill location throughout the entire month. The model results have errors ranging from 20\% to 50\% over the course of the month. In addition, the F2 peak electron density (NmF2) and height of the peak (HmF2) are compared for the month. On average the model indicates higher peak electron densities as well as a higher HmF2. During the time period from 9 September through 13 September, the trends in the data are different than the trends in the model results. These differences are due to active solar and geomagnetic conditions during this time period. Three-dimensional (3-D) GITM results are presented during these active conditions, and it is found that the 3-D model results replicate the trends in the data more closely. GITM is able to capture the positive storm phase that occurred late on 10 September but has the most difficulty capturing the density depletion on 11 and 12 September that is seen in the data. This is probably a result of the use of statistical high-latitude and solar drivers that are not as accurate during storm time.

Pawlowski, David; Ridley, Aaron; Kim, Insung; Bernstein, Dennis;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI: https://doi.org/10.1029/2007JA012390

Ionosphere; model; incoherent scatter radar

2007

Ionospheric disturbances during the severe magnetic storm of November 7\textendash10, 2004

Grigorenko, E.; Lysenko, V.; Pazyura, S.; Taran, V.; Chernogor, L.;

Published by: Geomagnetism and Aeronomy      Published on: Jan-12-2007

YEAR: 2007     DOI: 10.1134/S0016793207060059

Ionospheric disturbances during the severe magnetic storm of November 7—10, 2004

Grigorenko, EI; Lysenko, VN; Pazyura, SA; Taran, VI; Chernogor, LF;

Published by: Geomagnetism and Aeronomy      Published on:

YEAR: 2007     DOI:

Testing regional vertical total electron content maps over Europe during the 17—21 January 2005 sudden space weather event

The intense level of solar activity recorded from 16 to 23 January 2005 led to a series of events with different signatures at the Earth s ionospheric distances. Measurements of the critical frequency of the F 2 layer f o F 2 and the vertical total electron content (VTEC) are used to describe the temporal and spatial electron density distributions during this space weather event, which gives an excellent opportunity to test regional VTEC maps over Europe under such disturbed solar-terrestrial conditions. In this context, the tests used to validate the International GNSS Service (IGS) VTEC maps have been applied to assess the accuracy of the European Rutherford Appleton Laboratory (RAL) VTEC maps.

Orus, R; Cander, Lj; Hernandez-Pajares, M;

Published by: Radio Science      Published on:

YEAR: 2007     DOI: 10.1029/2006RS003515

IDA4D-a new ionospheric imaging algorithm using non-linear ground-based and spaced-based data sources

Bust, G; Crowley, G; Curtis, N; Reynolds, A; Paxton, L; Coker, C; Bernhardt, P;

Published by:       Published on:

YEAR: 2007     DOI:

2006

Simultaneous inversion of total electron content and UV radiance data to produce F region electron densities

The High Resolution Airglow and Aurora Spectroscopy (HIRAAS) experiment was launched aboard ARGOS on 23 February 1999. The HIRAAS experiment operated from mid-May

Dymond, KF; McDonald, SE; Coker, C; Bernhardt, PA; Selcher, CA;

Published by: Radio science      Published on:

YEAR: 2006     DOI: 10.1029/2005RS003363

2003

TIMED: From concept to realization

Mellott, Mary; Elsbernd, Victoria;

Published by: Johns Hopkins APL technical digest      Published on:

YEAR: 2003     DOI:



  1