Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2007

Ionospheric disturbances during the severe magnetic storm of November 7\textendash10, 2004

Grigorenko, E.; Lysenko, V.; Pazyura, S.; Taran, V.; Chernogor, L.;

Published by: Geomagnetism and Aeronomy      Published on: Jan-12-2007

YEAR: 2007     DOI: 10.1134/S0016793207060059

Ionospheric disturbances during the severe magnetic storm of November 7—10, 2004

Grigorenko, EI; Lysenko, VN; Pazyura, SA; Taran, VI; Chernogor, LF;

Published by: Geomagnetism and Aeronomy      Published on:

YEAR: 2007     DOI:

2006

Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF B y

We investigate the variations in the thermosphere and ionosphere using multi-instrument observations during the April 2002 period, with a particular focus on periods during small geomagnetic disturbances. Large and long-lasting reductions in the daytime electron density were observed at midlatitudes by incoherent scatter radars, ionosondes, and GPS receivers. These reductions reached 30\textendash50\% and were observed over an extended longitudinal area. They propagated to middle latitudes (35\textendash40\textdegreeN) in the case of a weak geomagnetic disturbance (Kp = 3-) and to low latitudes (0\textendash10\textdegreeN) in the case of a stronger disturbance (Kp = 5-). Data from the GUVI instrument aboard the TIMED satellite reveal a reduction in the daytime O/N2 ratio in the coincident area. Similar decreases are also predicted by the TIMEGCM/ASPEN model in both O/N2 ratio and electron density, though the magnitude of the decrease from the model is smaller than observed. We suggest that these ionospheric and thermospheric disturbances result from high-latitude energy input and efficient transport of regions with reduced O/N2 to lower latitudes. We discuss the possible role of a strong positive By component of the interplanetary magnetic field in the transport of regions with reduced O/N2.

Goncharenko, L.; Salah, J.; Crowley, G.; Paxton, L.; Zhang, Y.; Coster, A.; Rideout, W.; Huang, C.; Zhang, S.; Reinisch, B.; Taran, V.;

Published by: Journal of Geophysical Research      Published on: 03/2006

YEAR: 2006     DOI: 10.1029/2004JA010683

Electron density; thermospheric composition; thermospheric wind



  1