Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2022

Solar and interplanetary events that drove two CIR-related geomagnetic storms of 1 June 2013 and 7 October 2015, and their ionospheric responses at the American and African equatorial ionization Anomaly regions

This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model data alongside the GNSS data. The 1 June 2013 geomagnetic storm was driven by a combination of a weak CME and HSSs from solar coronal holes, while the 7 October 2015 storm was solely driven by HSSs. Storm-time hemispherical asymmetry in ionospheric TEC and irregularities distributions was consistently observed. Storm with minimum SYM-H value at day-side locations caused enhancement in plasma ionization and pole-ward movement of EIA crests, while storm with minimum SYM-H value at night-side locations caused reduction in plasma ionization and equator-ward movement of EIA crests. The phase of responses of the ionosphere to geomagnetic storms depends on the local time of storm’s onset and local time of the storm’s main phase minimum which also determine the orientation of Prompt Penetration Electric Field (PPEF). At storm’s onset time in the low latitude regions, the main storm-induced electric field is PPEF. Daytime eastward PPEF intensified plasma fountain to increase the EIA crests locations, while nighttime westward PPEF reversed plasma fountain to cause equator-ward collapse of the EIA crests. However, around the storm’s recovery phase, under southward turning of IMF Bz, depending on their orientations, PPEF and Disturbed Dynamo Electric Field (DDEF) collectively influenced low latitude ionosphere. Eastward PPEF at the Pre-Reversal Enhancement (PRE) time enhanced irregularities generation, while westward DDEF at PRE time inhibited irregularities generation. The season of storm’s occurrence is also a factor that dictates ionospheric response to a storm, for instance, the 7 October storm (SYM-H −124 nT) influenced the ionosphere more than the 1 June storm (SYM-H −137 nT). Both storms had long recovery phase. On pre-storm days, we observed stronger and well-developed EIA crests over the American sector than over the African sector.

Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.;

Published by: Advances in Space Research      Published on: mar

YEAR: 2022     DOI: 10.1016/j.asr.2021.12.027

geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities

Morphologies of ionospheric-equivalent slab-thickness and scale height over equatorial latitude in Africa

Accurate representation of ionospheric equivalent slab thickness (τ) and scale height (Hm) plays a crucial role in characterizing the complex dynamics of topside and bottomside ionospheric constituents. In the present work, we examined the corresponding morphologies of ionospheric profile parameters with collocated global positioning system (GPS) and Digisonde Portable Sounder (DPS) setups at an equatorial location in west Africa Ilorin (8.50°N, 4.68°E), during a low solar activity year 2010. The extracted τ from GPS and DPS in selected quiet periods confirm it to be a first-order measure of Hm over Africa. The seasonal analysis of τ shows substantial enhancement in the magnitude during the post-sunset and solstice seasons, of which December solstice manifests relatively higher values than June solstice. This result could be associated with the elevation of the meridional wind and drift in the parameters, which are more substantial during the post-noon and solstices. Therefore, at solstices, the post-night increase could indicate solar cycle dynamics during HSA (high solar activity) and LSA (low solar activity). However, the extracted Hm from its relationship with τ did not show visible effects of dynamics in E × B plasma drift and the meridional wind. In our study, a decline in morphologies of Hm and τ from December solstice to June solstice through the equinox is not consistent with the existing observations at mid-latitude. The results would complement the relationships between bottomside and topside profile peak parameters and dynamics of ionospheric constituents for a realistic representation and modeling of the ionosphere over African equatorial and low latitude regions. Thus, it also contributes to the global effort of improving ionospheric prediction and forecasting models.

Odeyemi, Olumide; Adeniyi, Jacob; Oyeyemi, Elijah; Panda, Sampad; Jamjareegulgarn, Punyawi; Olugbon, Busola; Oluwadare, Esholomo; Akala, Andrew; Olawepo, Adeniji; Adewale, Adekola;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.030

Global positioning system; Digital portable sounder; Equatorial latitude; Equivalent slab thickness; scale height

Responses of the African-European equatorial-, low-, mid-, and high-latitude ionosphere to geomagnetic storms of 2013, 2015 St Patrick’s Days, 1 June 2013, and 7 October 2015

This study investigates ionospheric responses to 2013 and 2015 St. Patrick’s Days (CME-driven), 1 June 2013 and 7 October 2015 (CIR-driven) geomagnetic storms over the African-

Akala, AO; Afolabi, RO; Otsuka, Y;

Published by: Advances in Space Research      Published on:

YEAR: 2022     DOI: 10.1016/j.asr.2022.10.029

2021

Responses of the Indian Equatorial Ionization Anomaly to two CME-induced geomagnetic storms during the peak phase of solar cycle 24

This work analyzes the geo-effectiveness of Coronal Mass Ejection- (CME-) induced storms by investigating the responses of ionospheric Vertical Total Electron Content (VTEC) and the Equatorial Ionization Anomaly (EIA) over the Indian sector to two storms. One of the storms occurred on February 19, 2014 (SYM-H: −120 nT), while the other occurred on June 23, 2015 (SYM-H: −204 nT). Both storms were driven by full halo CMEs. Global TEC maps were used to characterize VTEC variations during the storms. June 23, 2015 storm was characterized with stronger solar progenitors, right from its origin, although the VTEC response to the storm was not influenced by their strong progenitors. The CMEs that caused the selected storms are large (Halo CMEs). We inferred that irrespective of the strength of solar origin of a storm, the response of ionization distribution over equatorial and low-latitude regions to it depends on the season of storm occurrence, local time of the storm onset, and PPEF orientation. From the VTEC variations for the three Indian stations namely, Trivandrum (geographic latitude: 8.52°N, geographic longitude: 76.94°E, magnetic latitude: 0.37°N), Hyderabad (17.39°N, 78.49°E, 10.15°N) and Delhi (28.70°N, 77.10°E, 22.70°N), we observed that EIA disturbances were more prominent over Hyderabad than over Delhi. The February 19, 2014 storm was characterized by a localized EIA crest at latitude a little above Hyderabad, while in June 23, 2015 storm localized EIA crest was observed directly on Hyderabad. IRI-2016 model generally underestimated VTEC at the three Indian equatorial and low-latitude locations. Solar cycle 24 was characterized with low heliospheric pressure due to its weak polar field strength. The lower pressure allowed CMEs to expand greatly as they transit through space. As they expand, the strengths of the magnetic field inside them decrease, and such lower-strength magnetic fields cause geomagnetic storms that are less geoeffective, even when their solar/interplanetary progenitors are strong and healthy. This associated weak polar field strength of solar cycle 24 caused weak fountain effect with the attendant inability to exhibit storm-time super-fountain effect in the dayside of the equatorial/low-latitude regions.

Simi, K.; Akala, A.; Krishna, Siva; Amaechi, Paul; Ogwala, Aghogho; Ratnam, Venkata; Oyedokun, O.;

Published by: Advances in Space Research      Published on: oct

YEAR: 2021     DOI: 10.1016/j.asr.2021.06.013

Coronal mass ejection; Disturbance dynamo electric field; geomagnetic storm; prompt penetration electric field; total electron content

Responses of the African equatorial ionization anomaly (EIA) to some selected intense geomagnetic storms during the maximum phase of solar cycle 24

This study investigates the morphology of the GPS TEC responses in the African Equatorial Ionization Anomaly (EIA) region to intense geomagnetic storms during the ascending and maximum phases of solar cycle 24 (2012–2014). Specifically, eight intense geomagnetic storms with Dst ≤ −100 nT were considered in this investigation using TEC data obtained from 13 GNSS receivers in the East African region within 36–42°E geographic longitude; 29°N–10°S geographic latitude; ± 20°N magnetic latitude. The storm-time behavior of TEC shows clear positive and negative phases relative to the non-storm (median) behavior, with amplitudes being dependent on the time of sudden commencement of the storm and location. When a storm starts in the morning period, total electron content increases for all stations while a decrease in total electron content is manifested for a storm that had its sudden commencement in the afternoon period. The TEC and the EIA crest during the main phase of the storm is significantly impacted by the geomagnetic storm, which experiences an increase in the intensity of TEC while the location and spread of the crest usually manifest a poleward expansion.

Oyedokun, O.; Akala, A.; Oyeyemi, E.;

Published by: Advances in Space Research      Published on: feb

YEAR: 2021     DOI: 10.1016/j.asr.2020.11.020

African equatorial ionization anomaly; geomagnetic storm; GNSS; Ionosphere

Comparison of ionospheric anomalies over African equatorial/low-latitude region with IRI-2016 model predictions during the maximum phase of solar cycle 24

The capability of IRI-2016 in reproducing the hemispheric asymmetry, the winter and semiannual anomalies has been assessed over the equatorial ionization anomaly (EIA) during quiet periods of years 2013–2014. The EIA reconstructed using Total Electron Content (TEC) derived from Global Navigation Satellite System was compared with that computed using IRI-2016 along longitude 25° − 40oE. These were analyzed along with hemispheric changes in the neutral wind derived from the horizontal wind model and the TIMED GUVI columnar O/N2 data. IRI-2016 clearly captured the hemispheric asymmetry of the anomaly during all seasons albeit with some discrepancies in the magnitude and location of the crests. The winter anomaly in TEC which corresponded with greater O/N2 in the winter hemisphere was also predicted by IRI-2016 during December solstice. The model also captured the semiannual anomaly with stronger crests in the northern hemisphere. Furthermore, it reproduced the variation trend of the asymmetry index (A) in December solstice and equinox during noon. However, in June solstice the model failed to capture the winter anomaly and misrepresented the variation of A. This was linked with its inability to accurately predict the pattern of the neutral wind, the maximum height of the F2 layer and the changes in O/N2 in both hemispheres. The difference between the variations of EUV and F10.7 fluxes was also a potential source of errors in IRI-2016. The results highlight the significance of the inclusion of wind data in IRI-2016 in order to enhance its performance over East Africa.

Amaechi, Paul; Oyeyemi, Elijah; Akala, Andrew; Kaab, Mohamed; Younas, Waqar; Benkhaldoun, Zouhair; Khan, Majid; Mazaudier, Christine-Amory;

Published by: Advances in Space Research      Published on: aug

YEAR: 2021     DOI: 10.1016/j.asr.2021.03.040

Equatorial ionization anomaly; hemispheric asymmetry; IRI-2016; Semiannual anomaly; Winter anomaly

Solar Origins of August 26, 2018 Geomagnetic Storm: Responses of the Interplanetary Medium and Equatorial/Low-Latitude Ionosphere to the Storm

This study investigates the solar origins of August 26, 2018 geomagnetic storm and the responses of the interplanetary medium and equatorial/low-latitude ionosphere to it. We used a multiinstrument approach, with observations right from the solar surface to the Earth. Our results showed that the G3 geomagnetic storm of August 26, 2018 was initiated by a solar filament eruption of August 20, 2018. The storm was driven by an aggregation of weak Coronal Mass Ejection (CME) transients and Corotating Interaction Regions/High Speed Streams (CIR/HSSs). The solar wind energy which got transferred into the magnetosphere drove electrical currents, that penetrated down into the ionosphere to produce weak Prompt Penetration Electric Field (PPEF) (0.3 mV/m). For this reason, during the storm, at daytime, plasma densities of the Equatorial Ionization Anomaly (EIA) crests were localized within the inner flank of ±15° magnetic latitude strip. We attributed this to the extreme quietness of year 2018. There was a clear hemispherical asymmetry, with higher Total Electron Content (TEC) in the northern hemisphere. The major determining factors of the ionospheric responses during the various phases of this storm were the local time of the storm s onset, local time of storm s minimum SYM-H, and changes in thermospheric O/N2.

Akala, A.; Oyedokun, O.; Amaechi, P.; Simi, K.; Ogwala, A.; Arowolo, O.;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2021SW002734



  1