Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2022

Morphologies of ionospheric-equivalent slab-thickness and scale height over equatorial latitude in Africa

Accurate representation of ionospheric equivalent slab thickness (τ) and scale height (Hm) plays a crucial role in characterizing the complex dynamics of topside and bottomside ionospheric constituents. In the present work, we examined the corresponding morphologies of ionospheric profile parameters with collocated global positioning system (GPS) and Digisonde Portable Sounder (DPS) setups at an equatorial location in west Africa Ilorin (8.50°N, 4.68°E), during a low solar activity year 2010. The extracted τ from GPS and DPS in selected quiet periods confirm it to be a first-order measure of Hm over Africa. The seasonal analysis of τ shows substantial enhancement in the magnitude during the post-sunset and solstice seasons, of which December solstice manifests relatively higher values than June solstice. This result could be associated with the elevation of the meridional wind and drift in the parameters, which are more substantial during the post-noon and solstices. Therefore, at solstices, the post-night increase could indicate solar cycle dynamics during HSA (high solar activity) and LSA (low solar activity). However, the extracted Hm from its relationship with τ did not show visible effects of dynamics in E × B plasma drift and the meridional wind. In our study, a decline in morphologies of Hm and τ from December solstice to June solstice through the equinox is not consistent with the existing observations at mid-latitude. The results would complement the relationships between bottomside and topside profile peak parameters and dynamics of ionospheric constituents for a realistic representation and modeling of the ionosphere over African equatorial and low latitude regions. Thus, it also contributes to the global effort of improving ionospheric prediction and forecasting models.

Odeyemi, Olumide; Adeniyi, Jacob; Oyeyemi, Elijah; Panda, Sampad; Jamjareegulgarn, Punyawi; Olugbon, Busola; Oluwadare, Esholomo; Akala, Andrew; Olawepo, Adeniji; Adewale, Adekola;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.030

Global positioning system; Digital portable sounder; Equatorial latitude; Equivalent slab thickness; scale height

Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017

Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 September 2017 that are associated with the strongest and consecutive solar flares in the 24th solar cycle. The night-time influence of partial ring current signatures in ASYH and the daytime influence of the disturbances in the ionospheric E region electric currents (Diono) are highlighted during the event. The total electron content (TEC) from the latitudinal GNSS observables indicate a perturbed equatorial ionization anomaly (EIA) condition on 7 September, due to a sequence of M-class solar flares and associated prompt penetration electric fields (PPEFs), whereas the suppressed EIA on 8 September with an inverted equatorial electrojet (EEJ) suggests the driving disturbance dynamo electric current (Ddyn) corresponding to disturbance dynamo electric fields (DDEFs) penetration in the E region and additional contributions from the plausible storm-time compositional changes (O/N2) in the F-region. The concurrent analysis of the Diono and EEJ strengths help in identifying the pre-reversal effect (PRE) condition to seed the development of equatorial plasma bubbles (EPBs) during the local evening sector on the storm day. The severity of ionospheric irregularities at different latitudes is revealed from the occurrence rate of the rate of change of TEC index (ROTI) variations. Further, the investigations of the hourly maximum absolute error (MAE) and root mean square error (RMSE) of ROTI from the reference quiet days’ levels and the timestamps of ROTI peak magnitudes substantiate the severity, latitudinal time lag in the peak of irregularity, and poleward expansion of EPBs and associated scintillations. The key findings from this study strengthen the understanding of evolution and the drifting characteristics of plasma irregularities over the Indian low latitudes.

Vankadara, Ram; Panda, Sampad; Amory-Mazaudier, Christine; Fleury, Rolland; Devanaboyina, Venkata; Pant, Tarun; Jamjareegulgarn, Punyawi; Haq, Mohd; Okoh, Daniel; Seemala, Gopi;

Published by: Remote Sensing      Published on: jan

YEAR: 2022     DOI: 10.3390/rs14030652

space weather; equatorial plasma bubbles; ionospheric irregularity; global navigation satellite system; magnetometer; poleward drift; rate of change of TEC index; scintillations; storm-time electric currents

2016

Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick's Day geomagnetic storm of 17 March 2015

The current study aims at investigating and identifying the ionospheric effects of the geomagnetic storm that occurred during 17\textendash19 March 2015. Incidentally, with SYM-H hitting a minimum of -232\ nT, this was the strongest storm of the current solar cycle 24. The study investigates how the storm has affected the equatorial, low-latitude, and midlatitude ionosphere in the American and the European sectors using available ground-based ionosonde and GPS TEC (total electron content) data. The possible effects of prompt electric field penetration is observed in both sectors during the main phase of the storm. In the American sector, the coexistence of both positive and negative ionospheric storm phases are observed at low latitudes and midlatitudes to high latitudes, respectively. The positive storm phase is mainly due to the prompt penetration electric fields. The negative storm phase in the midlatitude region is a combined effect of disturbance dynamo electric fields, the equatorward shift of the midlatitude density trough, and the equatorward compression of the plasmapause in combination with chemical compositional changes. Strong negative ionospheric storm phase is observed in both ionosonde and TEC observations during the recovery phase which also shows a strong hemispherical asymmetry. Additionally, the variation of equatorial ionization anomaly as seen through the SWARM constellation plasma measurements across different longitudes has been discussed. We, also, take a look at the performance of the IRI Real-Time Assimilative Mapping during this storm as an ionospheric space weather tool.

Nayak, Chinmaya; Tsai, L.-C.; Su, S.-Y.; Galkin, I.; Tan, Adrian; Nofri, Ed; Jamjareegulgarn, Punyawi;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022489



  1