Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2022

Solar and interplanetary events that drove two CIR-related geomagnetic storms of 1 June 2013 and 7 October 2015, and their ionospheric responses at the American and African equatorial ionization Anomaly regions

This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model data alongside the GNSS data. The 1 June 2013 geomagnetic storm was driven by a combination of a weak CME and HSSs from solar coronal holes, while the 7 October 2015 storm was solely driven by HSSs. Storm-time hemispherical asymmetry in ionospheric TEC and irregularities distributions was consistently observed. Storm with minimum SYM-H value at day-side locations caused enhancement in plasma ionization and pole-ward movement of EIA crests, while storm with minimum SYM-H value at night-side locations caused reduction in plasma ionization and equator-ward movement of EIA crests. The phase of responses of the ionosphere to geomagnetic storms depends on the local time of storm’s onset and local time of the storm’s main phase minimum which also determine the orientation of Prompt Penetration Electric Field (PPEF). At storm’s onset time in the low latitude regions, the main storm-induced electric field is PPEF. Daytime eastward PPEF intensified plasma fountain to increase the EIA crests locations, while nighttime westward PPEF reversed plasma fountain to cause equator-ward collapse of the EIA crests. However, around the storm’s recovery phase, under southward turning of IMF Bz, depending on their orientations, PPEF and Disturbed Dynamo Electric Field (DDEF) collectively influenced low latitude ionosphere. Eastward PPEF at the Pre-Reversal Enhancement (PRE) time enhanced irregularities generation, while westward DDEF at PRE time inhibited irregularities generation. The season of storm’s occurrence is also a factor that dictates ionospheric response to a storm, for instance, the 7 October storm (SYM-H −124 nT) influenced the ionosphere more than the 1 June storm (SYM-H −137 nT). Both storms had long recovery phase. On pre-storm days, we observed stronger and well-developed EIA crests over the American sector than over the African sector.

Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.;

Published by: Advances in Space Research      Published on: mar

YEAR: 2022     DOI: 10.1016/j.asr.2021.12.027

geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities

Climatology of global, hemispheric and regional electron content variations during the solar cycles 23 and 24

We present the results of study on the variations of ionospheric total electron content (TEC) by using global, hemispheric, and regional electron contents computed from the global ionospheric maps (GIMs) for the period from 1999 to 2020. For a low and moderate solar activity, the global and regional electron contents vary linearly with solar 10.7 cm radio flux and EUV flux. While a saturation effect in the electron content verses EUV and F10.7 is found during the high solar activity periods at all regions, the maximum effect is observed at low-latitudes followed by high and mid-latitudes region. The extent of saturation effect is more pronounced for F10.7 as compared to EUV. A wavelet transform is applied to global and hemispheric electron contents to examine the relative strength of different variations. The semi-annual variations dominate in the northern hemisphere, whereas annual variations dominate in the southern counterpart. The amplitude of annual variations in southern hemisphere is found to be higher than northern counterpart at all latitudes. This asymmetry in the amplitude of annual variation is maximum at low-latitudes, followed by mid and high-latitudes, respectively. The semi-annual variations are in-phase in both hemisphere and follow the solar cycle. The northern hemisphere depicts relatively large amplitude of semi-annual variations and exhibit the maximum effect at high-latitudes.

Younas, Waqar; Amory-Mazaudier, C.; Khan, Majid; Amaechi, Paul;

Published by: Advances in Space Research      Published on: jul

YEAR: 2022     DOI: 10.1016/j.asr.2022.07.029

annual variation; global electron content; Ionosphere; semi-annual variation; total electron content

Middle and low latitudes hemispheric asymmetries in ∑O/N2 and TEC during intense magnetic storms of solar cycle 24

We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. It is found that the mid-latitudes region has exhibited a large decrease in ∑O/N2 during all the phases of the storms under consideration, which corresponds well to the observed negative storm effects. This decrease is directly related with the storm intensity. The maximum reduction in the ∑O/N2 is observed for the St. Patrick day storm of 2015 (which was the most intense geomagnetic storm of SC-24), whereas the respective minimum decrease is found for the storm of April 2012. Strong hemispheric asymmetries, in ∑O/N2 variation, have been observed at the mid-latitudes sector, and can be associated with the asymmetric energy input as indicated by polar cap (PC) indices. The high speed solar winds streams (HSSWs) during the recovery phases of March 2013 and 2015 storms have caused a significant reduction in ∑O/N2 at mid-latitudes, which could not be reproduced by the coupled thermosphere-ionosphere-plasmasphere electrodynamics (CTIPe) model. On the other hand the low-latitudes region depicts an enhancement in ∑O/N2 during all the storms except for the early recovery phases. The positive storm effect at low-latitudes agrees well with this ∑O/N2 increase, thus indicating that the composition change is one of the major drivers of TEC enhancement at low-latitudes. The CTIPe model showed discrepancies in reproducing the satellite data for all the considered storms, especially during the recovery phases. Furthermore, the model is failed to replicate the hemispheric asymmetries at low and mid-latitudes during the main and early recovery phases.

Younas, Waqar; Khan, Majid; Amory-Mazaudier, C.; Amaechi, Paul; Fleury, R.;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.027

CTIPe model; Disturbed ∑O/N; GUVI/TIMED data; Hemispheric asymmetries; REC

Middle and low latitudes hemispheric asymmetries in∑ O/N2 and TEC during intense magnetic storms of Solar Cycle 24

We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season.

Younas, Waqar; Khan, Majid; Amory-Mazaudier, C; Amaechi, Paul; Fleury, R;

Published by: Advances in Space Research      Published on:

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.027

2021

Responses of the Indian Equatorial Ionization Anomaly to two CME-induced geomagnetic storms during the peak phase of solar cycle 24

This work analyzes the geo-effectiveness of Coronal Mass Ejection- (CME-) induced storms by investigating the responses of ionospheric Vertical Total Electron Content (VTEC) and the Equatorial Ionization Anomaly (EIA) over the Indian sector to two storms. One of the storms occurred on February 19, 2014 (SYM-H: −120 nT), while the other occurred on June 23, 2015 (SYM-H: −204 nT). Both storms were driven by full halo CMEs. Global TEC maps were used to characterize VTEC variations during the storms. June 23, 2015 storm was characterized with stronger solar progenitors, right from its origin, although the VTEC response to the storm was not influenced by their strong progenitors. The CMEs that caused the selected storms are large (Halo CMEs). We inferred that irrespective of the strength of solar origin of a storm, the response of ionization distribution over equatorial and low-latitude regions to it depends on the season of storm occurrence, local time of the storm onset, and PPEF orientation. From the VTEC variations for the three Indian stations namely, Trivandrum (geographic latitude: 8.52°N, geographic longitude: 76.94°E, magnetic latitude: 0.37°N), Hyderabad (17.39°N, 78.49°E, 10.15°N) and Delhi (28.70°N, 77.10°E, 22.70°N), we observed that EIA disturbances were more prominent over Hyderabad than over Delhi. The February 19, 2014 storm was characterized by a localized EIA crest at latitude a little above Hyderabad, while in June 23, 2015 storm localized EIA crest was observed directly on Hyderabad. IRI-2016 model generally underestimated VTEC at the three Indian equatorial and low-latitude locations. Solar cycle 24 was characterized with low heliospheric pressure due to its weak polar field strength. The lower pressure allowed CMEs to expand greatly as they transit through space. As they expand, the strengths of the magnetic field inside them decrease, and such lower-strength magnetic fields cause geomagnetic storms that are less geoeffective, even when their solar/interplanetary progenitors are strong and healthy. This associated weak polar field strength of solar cycle 24 caused weak fountain effect with the attendant inability to exhibit storm-time super-fountain effect in the dayside of the equatorial/low-latitude regions.

Simi, K.; Akala, A.; Krishna, Siva; Amaechi, Paul; Ogwala, Aghogho; Ratnam, Venkata; Oyedokun, O.;

Published by: Advances in Space Research      Published on: oct

YEAR: 2021     DOI: 10.1016/j.asr.2021.06.013

Coronal mass ejection; Disturbance dynamo electric field; geomagnetic storm; prompt penetration electric field; total electron content

Assessment of the predictive capabilities of NIGTEC model over Nigeria during geomagnetic storms

The Nigerian Total Electron Content (NIGTEC) is a regional neural network-based model developed by the Nigerian Centre for Atmospheric Research to predict the Total Electron Content (TEC) at any location over Nigeria. The addition of the disturbance storm time (Dst) index as one of NIGTEC s input layer neurons raises a question of its accuracy during geomagnetic storms. In this paper, the capability of NIGTEC in predicting the variability of TEC during geomagnetic storms has been assessed. TEC data predicted by NIGTEC is compared with those derived from Global Navigation Satellite System (GNSS) over Lagos (6.5oN, 3.4oE) and Toro (10.1oN, 9.12oE) during the intense storms in March 2012 and 2013. The model s predictive capability is evaluated in terms of Root Mean Square Error (RMSE). NIGTEC reproduced a fairly good storm time morphology in VTEC driven by the prompt penetration electric field and the increase in thermospheric O/N2. Nevertheless, it failed to predict the increase in TEC after the intense sudden impulse of 60 nT on 8 March 2012. And it could not capture the changes in VTEC driven by the storm time equatorward neutral wind especially during 18:00–24:00 UT. Consequently, the RMSEs were higher during this time window, and the highest RMSE value was obtained during the most intense storm in March 2012.

Amaechi, Paul; Humphrey, Ibifubara; Adewoyin, David;

Published by: Geodesy and Geodynamics      Published on: nov

YEAR: 2021     DOI: 10.1016/j.geog.2021.09.003

geomagnetic storm; global navigation satellite system; Nigerian Total Electron Content (NIGTEC); total electron content

Comparison of ionospheric anomalies over African equatorial/low-latitude region with IRI-2016 model predictions during the maximum phase of solar cycle 24

The capability of IRI-2016 in reproducing the hemispheric asymmetry, the winter and semiannual anomalies has been assessed over the equatorial ionization anomaly (EIA) during quiet periods of years 2013–2014. The EIA reconstructed using Total Electron Content (TEC) derived from Global Navigation Satellite System was compared with that computed using IRI-2016 along longitude 25° − 40oE. These were analyzed along with hemispheric changes in the neutral wind derived from the horizontal wind model and the TIMED GUVI columnar O/N2 data. IRI-2016 clearly captured the hemispheric asymmetry of the anomaly during all seasons albeit with some discrepancies in the magnitude and location of the crests. The winter anomaly in TEC which corresponded with greater O/N2 in the winter hemisphere was also predicted by IRI-2016 during December solstice. The model also captured the semiannual anomaly with stronger crests in the northern hemisphere. Furthermore, it reproduced the variation trend of the asymmetry index (A) in December solstice and equinox during noon. However, in June solstice the model failed to capture the winter anomaly and misrepresented the variation of A. This was linked with its inability to accurately predict the pattern of the neutral wind, the maximum height of the F2 layer and the changes in O/N2 in both hemispheres. The difference between the variations of EUV and F10.7 fluxes was also a potential source of errors in IRI-2016. The results highlight the significance of the inclusion of wind data in IRI-2016 in order to enhance its performance over East Africa.

Amaechi, Paul; Oyeyemi, Elijah; Akala, Andrew; Kaab, Mohamed; Younas, Waqar; Benkhaldoun, Zouhair; Khan, Majid; Mazaudier, Christine-Amory;

Published by: Advances in Space Research      Published on: aug

YEAR: 2021     DOI: 10.1016/j.asr.2021.03.040

Equatorial ionization anomaly; hemispheric asymmetry; IRI-2016; Semiannual anomaly; Winter anomaly

Solar Origins of August 26, 2018 Geomagnetic Storm: Responses of the Interplanetary Medium and Equatorial/Low-Latitude Ionosphere to the Storm

This study investigates the solar origins of August 26, 2018 geomagnetic storm and the responses of the interplanetary medium and equatorial/low-latitude ionosphere to it. We used a multiinstrument approach, with observations right from the solar surface to the Earth. Our results showed that the G3 geomagnetic storm of August 26, 2018 was initiated by a solar filament eruption of August 20, 2018. The storm was driven by an aggregation of weak Coronal Mass Ejection (CME) transients and Corotating Interaction Regions/High Speed Streams (CIR/HSSs). The solar wind energy which got transferred into the magnetosphere drove electrical currents, that penetrated down into the ionosphere to produce weak Prompt Penetration Electric Field (PPEF) (0.3 mV/m). For this reason, during the storm, at daytime, plasma densities of the Equatorial Ionization Anomaly (EIA) crests were localized within the inner flank of ±15° magnetic latitude strip. We attributed this to the extreme quietness of year 2018. There was a clear hemispherical asymmetry, with higher Total Electron Content (TEC) in the northern hemisphere. The major determining factors of the ionospheric responses during the various phases of this storm were the local time of the storm s onset, local time of storm s minimum SYM-H, and changes in thermospheric O/N2.

Akala, A.; Oyedokun, O.; Amaechi, P.; Simi, K.; Ogwala, A.; Arowolo, O.;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2021SW002734



  1