Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2020

Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80 E and 120 E longitudes in the Asian sector

Lissa, D; Srinivasu, VKD; Prasad, DSVVD; Niranjan, K;

Published by: Advances in Space Research      Published on:

YEAR: 2020     DOI:

2019

L-band scintillation and TEC variations on St. Patrick’s Day storm of 17 March 2015 over Indian longitudes using GPS and GLONASS observations

The aim of the present study is to investigate the response of ionospheric total electron content (TEC), Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) scintillations during 17 March 2015 St. Patrick\textquoterights Day geomagnetic storm over Visakhapatnam, which is popularly known as Waltair (WALT) in the literature. GPS TEC observations obtained from five IGS stations (SGOC, IISC, HYDE, LCK4 and LHAZ) and WALT during the storm have been compared. The TEC derived from GPS, GLONASS constellations and CODE global ionosphere TEC map (GIM) over WALT has also been compared. Positive storm effect during the main phase of the storm and negative storm effect during the recovery phase of the storm were observed over the said stations. The variation of northern equatorial ionisation anomaly TEC (CODE GIM TEC maps) in response to the St. Patrick\textquoterights Day storm over four Indian longitudes (75oE, 80oE, 85oE and 90oE) has also been presented. Strong amplitude and phase scintillations were observed in the L-band signals of GPS and GLONASS constellations over WALT. Twelve satellite (Pseudo Random Noise) PRNs of GPS L1 and nine PRNs of each GLONASS L1 and L2-band signals were affected by strong amplitude and phase scintillation. The peak amplitude scintillation index (S4) obtained from the effected PRNs of GPS L1 signal and GLONASS L1-band signals over WALT range from 0.36 to 0.74 and 0.36 to 0.76, respectively. Strong fluctuations in rate of TEC index are noted over the said stations. This enhanced scintillation activity is mainly due to the main phase of the storm falls in the evening sector over the Indian region.

Srinivasu, K; Prasad, D; Niranjan, K; Seemala, Gopi; Venkatesh, K;

Published by: Journal of Earth System Science      Published on: 03/2019

YEAR: 2019     DOI: 10.1007/s12040-019-1097-6



  1