Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 15 entries in the Bibliography.


Showing entries from 1 through 15


2022

Satellite In Situ Electron Density Observations of the Midlatitude Storm Enhanced Density on the Noon Meridional Plane in the F Region During the 20 November 2003 Magnetic Storm

Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite-borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar-orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED s life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross-polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement.

Lin, Chin; Sutton, Eric; Wang, Wenbin; Cai, Xuguang; Liu, Guiping; Henney, Carl; Cooke, David;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029831

in situ plasma density; ionospheric electron density; prompt penetration electric field; Storm enhanced density; tongue of ionization

Satellite in-situ electron density observations of the midlatitude storm enhanced density on the noon meridional plane in the F region during the 20 November 2003 magnetic storm

The GUVI measurements indicated that the atomic oxygen (O) to molecular nitrogen (N2) (2021a) used the TIMED/GUVI limb measurements and TIEGCM simulations to investigate

Lin, Chin; Sutton, Eric; Wang, Wenbin; Cai, Xuguang; Liu, Guiping; Henney, Carl; Cooke, David;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029831

2018

How might the thermosphere and ionosphere react to an extreme space weather event?

This chapter explores how the thermosphere and ionosphere (T-I) might respond to extreme solar events. Three different scenarios are considered: (1) an increase in solar UV and EUV radiation for a number of days, (2) an extreme enhancement in the solar X-rays and EUV radiation associated with a flare, and (3) an extreme CME driving a geomagnetic storm. Estimating the response to the first two scenarios is reasonably well defined, and although they would certainly impact the T-I system, those impacts could potentially be mitigated. In contrast, the response to an extreme geomagnetic storm is significantly more complicated, making the response much more uncertain, and mitigation more challenging.

Fuller-Rowell, Tim; Emmert, John; Fedrizzi, Mariangel; Weimer, Daniel; Codrescu, Mihail; Pilinski, Marcin; Sutton, Eric; Viereck, Rodney; Raeder, Joachim; Doornbos, Eelco;

Published by:       Published on:

YEAR: 2018     DOI: 10.1016/B978-0-12-812700-1.00021-2

2017

Data-Driven Inference and Investigation of Thermosphere Dynamics and Variations

Mehta, Piyush; Linares, Richard; Sutton, Eric;

Published by: order      Published on:

YEAR: 2017     DOI:

2016

Ionosphere-thermosphere (IT) response to solar wind forcing during magnetic storms

During magnetic storms, there is a strong response in the ionosphere and thermosphere which occurs at polar latitudes. Energy input in the form of Poynting flux and energetic particle precipitation, and energy output in the form of heated ions and neutrals have been detected at different altitudes and all local times. We have analyzed a number of storms, using satellite data from the Defense Meteorological Satellite Program (DMSP), the Gravity Recovery and Climate Experiment (GRACE), Gravity field and steady-state Ocean Circulation Explorer (GOCE), and Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. Poynting flux measured by instruments on four DMSP spacecraft during storms which occurred in 2011\textendash2012 was observed in both hemispheres to peak at both auroral and polar latitudes. By contrast, the measured ion temperatures at DMSP and maxima in neutral density at GOCE and GRACE altitudes maximize in the polar region most frequently with little evidence of Joule heating at auroral latitudes at these spacecraft orbital locations.

Huang, Cheryl; Huang, Yanshi; Su, Yi-Jiun; Sutton, Eric; Hairston, Marc; Coley, William;

Published by: Journal of Space Weather and Space Climate      Published on: 01/2016

YEAR: 2016     DOI: 10.1051/swsc/2015041

Energy distribution; Ionosphere; polar cap; solar wind; thermosphere

2015

Semi-Empirical, First-Principles, and Hybrid Modeling of the Thermosphere to Enhance Data Assimilation

During this task, we established a method for extracting the most significant basis functions from a physics-based model of thethermosphere and ionosphere. A new model was then

Sutton, Eric;

Published by:       Published on:

YEAR: 2015     DOI:

2014

Forcing of the Coupled Ionosphere-Thermosphere (IT) System During Magnetic Storms

Huang, Cheryl; Huang, Yanshi; Su, Yi-Jiun; Sutton, Eric; Hairston, Marc; Coley, Robin; Doornbos, Eelco; Zhang, Yongliang;

Published by:       Published on:

YEAR: 2014     DOI:

2013

Ion-neutral coupling during deep solar minimum

The equatorial ionosphere under conditions of deep solar minimum exhibits structuring due to tidal forces. Data from instruments carried by the Communication/Navigation Outage Forecasting System (C/NOFS) which was launched in April 2008 have been analyzed for the first 2 years following launch. The Planar Langmuir Probe (PLP), Ion Velocity Meter (IVM) and Vector Electric Field Investigation (VEFI) all detect periodic structures during the 2008\textendash2010 period which appear to be tides. However when the tidal features detected by these instruments are compared, there are distinctive and significant differences between the observations. Tides in neutral densities measured by the Gravity Recovery and Climate Experiment (GRACE) satellite were also observed during June 2008. In addition, Broad Plasma Decreases (BPDs) appear as a deep absolute minimum in the plasma and neutral density tidal pattern. These are co-located with regions of large downward-directed ion meridional velocities and minima in the zonal drifts, all on the nightside. The region in which BPDs occur coincides with a peak in occurrence rate of dawn depletions in plasma density observed on the Defense Meterological Satellite Program (DMSP) spacecraft, as well as a minimum in radiance detected by UV imagers on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) and IMAGE satellites.

Huang, Cheryl; Roddy, Patrick; Sutton, Eric; Stoneback, Russell; Pfaff, Robert; Gentile, Louise; Delay, Susan;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2013

YEAR: 2013     DOI: 10.1016/j.jastp.2012.11.009

Equatorial ionosphere; Nonmigrating tides; Plasma depletions; thermosphere

2012

Annual and semiannual variations of thermospheric density: EOF analysis of CHAMP and GRACE data

Lei, Jiuhou; Matsuo, Tomoko; Dou, Xiankang; Sutton, Eric; Luan, Xiaoli;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2012     DOI:

2011

Rapid recovery of thermosphere density during the October 2003 geomagnetic storms

Lei, Jiuhou; Thayer, Jeffrey; Lu, Gang; Burns, Alan; Wang, Wenbin; Sutton, Eric; Emery, Barbara;

Published by: Journal of Geophysical Research      Published on: Jan-01-2011

YEAR: 2011     DOI: 10.1029/2010JA016164

2010

In-Situ O/N2 Ratios from the AFRL Mass Spectrometer on the TacSat-2 Satellite

Wise, John; Ballenthin, John; Marcos, Frank; Thorn, Willard; Sutton, E; Stastny, N; Chavez, F; Strickland, D;

Published by:       Published on:

YEAR: 2010     DOI:

2009

Reversed ionospheric convections during the November 2004 storm: Impact on the upper atmosphere

Using the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure, a particular period (2000–2350 UT on 9 November) in the November 2004 storm is studied. During this time interval, IMF Bz was strongly northward along with a high solar wind dynamic pressure, favorable conditions to form reversed convection in the polar region. Indeed, the AMIE outputs show strong reversed convection cells in both hemispheres for a long period (>1 h), which have rarely been observed. The impact on the thermospheric neutral wind has been investigated using the AMIE outputs as the electrodynamic inputs of the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model. After the ionospheric convection reversed, the neutral wind distribution at 400 km altitude changed correspondingly, and the difference wind patterns reversed in the polar cap region. By comparing the temporal variations of the difference ion convection and the difference neutral wind, it is found that horizontal neutral winds respond to the reversed convection with some time delay. The neutral wind response time (e-folding time) clearly has an altitudinal dependence varying from 45 min at 400 km altitude to almost 1.5 h at 200 km. The vertical component vorticity has a similar magnitude and distribution to previous studies in the northward Bz condition and changes the sign when the convection pattern is reversed. Comparison between the CHAMP observed cross-track wind and the simulated neutral wind exhibits a general agreement, and the temporal variations of CHAMP cross-track wind indicate a strong effect of the ion drag force on neutral winds.

Deng, Yue; Lu, Gang; Kwak, Young-Sil; Sutton, Eric; Forbes, Jeffrey; Solomon, Stan;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2009     DOI: https://doi.org/10.1029/2008JA013793

reversed convection; November 2004 storm

2008

Neutral composition and density effects in the October-November 2003 Magnetic Storms

Immel, TJ; Crowley, Geoff; Forbes, JM; Nerem, RS; Sutton, EK;

Published by: Midlatitude Ionospheric Dynamics and Disturbances      Published on:

YEAR: 2008     DOI:

Rotating solar coronal holes and periodic modulation of the upper atmosphere

Lei, Jiuhou; Thayer, Jeffrey; Forbes, Jeffrey; Sutton, Eric; Nerem, Steven;

Published by: Geophysical Research Letters      Published on:

YEAR: 2008     DOI:

2007

Density and winds in the thermosphere deduced from accelerometer data

IN THE past 10 years, the thermosphere community has called for a movement from station-based and regional studies to global studies spanning several decades [1–3]. Since these

Sutton, Eric; Nerem, Steven; Forbes, Jeffrey;

Published by: Journal of Spacecraft and Rockets      Published on:

YEAR: 2007     DOI: 10.2514/1.28641



  1