Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 530 entries in the Bibliography.


Showing entries from 1 through 50


2022

Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes

Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime;

Published by:       Published on: mar

YEAR: 2022     DOI: 10.5194/egusphere-egu22-8194

Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme

In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (\textless 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus.

Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro;

Published by: Experimental Astronomy      Published on: mar

YEAR: 2022     DOI: 10.1007/s10686-022-09846-9

Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050

Morphologies of ionospheric-equivalent slab-thickness and scale height over equatorial latitude in Africa

Accurate representation of ionospheric equivalent slab thickness (τ) and scale height (Hm) plays a crucial role in characterizing the complex dynamics of topside and bottomside ionospheric constituents. In the present work, we examined the corresponding morphologies of ionospheric profile parameters with collocated global positioning system (GPS) and Digisonde Portable Sounder (DPS) setups at an equatorial location in west Africa Ilorin (8.50°N, 4.68°E), during a low solar activity year 2010. The extracted τ from GPS and DPS in selected quiet periods confirm it to be a first-order measure of Hm over Africa. The seasonal analysis of τ shows substantial enhancement in the magnitude during the post-sunset and solstice seasons, of which December solstice manifests relatively higher values than June solstice. This result could be associated with the elevation of the meridional wind and drift in the parameters, which are more substantial during the post-noon and solstices. Therefore, at solstices, the post-night increase could indicate solar cycle dynamics during HSA (high solar activity) and LSA (low solar activity). However, the extracted Hm from its relationship with τ did not show visible effects of dynamics in E × B plasma drift and the meridional wind. In our study, a decline in morphologies of Hm and τ from December solstice to June solstice through the equinox is not consistent with the existing observations at mid-latitude. The results would complement the relationships between bottomside and topside profile peak parameters and dynamics of ionospheric constituents for a realistic representation and modeling of the ionosphere over African equatorial and low latitude regions. Thus, it also contributes to the global effort of improving ionospheric prediction and forecasting models.

Odeyemi, Olumide; Adeniyi, Jacob; Oyeyemi, Elijah; Panda, Sampad; Jamjareegulgarn, Punyawi; Olugbon, Busola; Oluwadare, Esholomo; Akala, Andrew; Olawepo, Adeniji; Adewale, Adekola;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.030

Global positioning system; Digital portable sounder; Equatorial latitude; Equivalent slab thickness; scale height

Morphologies of ionospheric-equivalent slab-thickness and scale height over equatorial latitude in Africa

Accurate representation of ionospheric equivalent slab thickness (τ) and scale height (Hm) plays a crucial role in characterizing the complex dynamics of topside and bottomside ionospheric constituents. In the present work, we examined the corresponding morphologies of ionospheric profile parameters with collocated global positioning system (GPS) and Digisonde Portable Sounder (DPS) setups at an equatorial location in west Africa Ilorin (8.50°N, 4.68°E), during a low solar activity year 2010. The extracted τ from GPS and DPS in selected quiet periods confirm it to be a first-order measure of Hm over Africa. The seasonal analysis of τ shows substantial enhancement in the magnitude during the post-sunset and solstice seasons, of which December solstice manifests relatively higher values than June solstice. This result could be associated with the elevation of the meridional wind and drift in the parameters, which are more substantial during the post-noon and solstices. Therefore, at solstices, the post-night increase could indicate solar cycle dynamics during HSA (high solar activity) and LSA (low solar activity). However, the extracted Hm from its relationship with τ did not show visible effects of dynamics in E × B plasma drift and the meridional wind. In our study, a decline in morphologies of Hm and τ from December solstice to June solstice through the equinox is not consistent with the existing observations at mid-latitude. The results would complement the relationships between bottomside and topside profile peak parameters and dynamics of ionospheric constituents for a realistic representation and modeling of the ionosphere over African equatorial and low latitude regions. Thus, it also contributes to the global effort of improving ionospheric prediction and forecasting models.

Odeyemi, Olumide; Adeniyi, Jacob; Oyeyemi, Elijah; Panda, Sampad; Jamjareegulgarn, Punyawi; Olugbon, Busola; Oluwadare, Esholomo; Akala, Andrew; Olawepo, Adeniji; Adewale, Adekola;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.030

Global positioning system; Digital portable sounder; Equatorial latitude; Equivalent slab thickness; scale height

Morphologies of ionospheric-equivalent slab-thickness and scale height over equatorial latitude in Africa

Accurate representation of ionospheric equivalent slab thickness (τ) and scale height (Hm) plays a crucial role in characterizing the complex dynamics of topside and bottomside ionospheric constituents. In the present work, we examined the corresponding morphologies of ionospheric profile parameters with collocated global positioning system (GPS) and Digisonde Portable Sounder (DPS) setups at an equatorial location in west Africa Ilorin (8.50°N, 4.68°E), during a low solar activity year 2010. The extracted τ from GPS and DPS in selected quiet periods confirm it to be a first-order measure of Hm over Africa. The seasonal analysis of τ shows substantial enhancement in the magnitude during the post-sunset and solstice seasons, of which December solstice manifests relatively higher values than June solstice. This result could be associated with the elevation of the meridional wind and drift in the parameters, which are more substantial during the post-noon and solstices. Therefore, at solstices, the post-night increase could indicate solar cycle dynamics during HSA (high solar activity) and LSA (low solar activity). However, the extracted Hm from its relationship with τ did not show visible effects of dynamics in E × B plasma drift and the meridional wind. In our study, a decline in morphologies of Hm and τ from December solstice to June solstice through the equinox is not consistent with the existing observations at mid-latitude. The results would complement the relationships between bottomside and topside profile peak parameters and dynamics of ionospheric constituents for a realistic representation and modeling of the ionosphere over African equatorial and low latitude regions. Thus, it also contributes to the global effort of improving ionospheric prediction and forecasting models.

Odeyemi, Olumide; Adeniyi, Jacob; Oyeyemi, Elijah; Panda, Sampad; Jamjareegulgarn, Punyawi; Olugbon, Busola; Oluwadare, Esholomo; Akala, Andrew; Olawepo, Adeniji; Adewale, Adekola;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.030

Global positioning system; Digital portable sounder; Equatorial latitude; Equivalent slab thickness; scale height

Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017

Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 September 2017 that are associated with the strongest and consecutive solar flares in the 24th solar cycle. The night-time influence of partial ring current signatures in ASYH and the daytime influence of the disturbances in the ionospheric E region electric currents (Diono) are highlighted during the event. The total electron content (TEC) from the latitudinal GNSS observables indicate a perturbed equatorial ionization anomaly (EIA) condition on 7 September, due to a sequence of M-class solar flares and associated prompt penetration electric fields (PPEFs), whereas the suppressed EIA on 8 September with an inverted equatorial electrojet (EEJ) suggests the driving disturbance dynamo electric current (Ddyn) corresponding to disturbance dynamo electric fields (DDEFs) penetration in the E region and additional contributions from the plausible storm-time compositional changes (O/N2) in the F-region. The concurrent analysis of the Diono and EEJ strengths help in identifying the pre-reversal effect (PRE) condition to seed the development of equatorial plasma bubbles (EPBs) during the local evening sector on the storm day. The severity of ionospheric irregularities at different latitudes is revealed from the occurrence rate of the rate of change of TEC index (ROTI) variations. Further, the investigations of the hourly maximum absolute error (MAE) and root mean square error (RMSE) of ROTI from the reference quiet days’ levels and the timestamps of ROTI peak magnitudes substantiate the severity, latitudinal time lag in the peak of irregularity, and poleward expansion of EPBs and associated scintillations. The key findings from this study strengthen the understanding of evolution and the drifting characteristics of plasma irregularities over the Indian low latitudes.

Vankadara, Ram; Panda, Sampad; Amory-Mazaudier, Christine; Fleury, Rolland; Devanaboyina, Venkata; Pant, Tarun; Jamjareegulgarn, Punyawi; Haq, Mohd; Okoh, Daniel; Seemala, Gopi;

Published by: Remote Sensing      Published on: jan

YEAR: 2022     DOI: 10.3390/rs14030652

space weather; equatorial plasma bubbles; ionospheric irregularity; global navigation satellite system; magnetometer; poleward drift; rate of change of TEC index; scintillations; storm-time electric currents

The African equatorial ionization anomaly response to the St. Patrick’s Day storms of March 2013 and 2015

The ionosphere around the Equatorial Ionization Anomaly (EIA) region exhibits complex dynamics and responds markedly to the solar-magnetospheric energy and momentum. In this paper, the hourly total electron content (TEC) variations in response to the EIA structure in Africa to the 2013 and 2015 St. Patrick’s Day storms is investigated using data obtained from a chain of GPS receivers located in the Africa region. The TEC variations are characterized based on the convective magnetospheric dynamo fields, neutral wind circulation, and zonal electric fields. Generally, the result indicates that the TEC variations are consistent with the different directions of the interplanetary fields during the different phases of the storms. We observed reverse EIA structures in the main phase of the March 2015 storm, likely to be related to the intense PPEF and strong equatorward wind, which imposed a westward zonal electric field at the equator. A similar equatorial peak observed during the recovery phase is associated with DDEF, poleward wind and plasma convergence. Furthermore, the TEC variations also indicate hemispheric asymmetries during the storms. During the main phase of the storm, the TEC variation is more enhanced in the Northern Hemisphere in March 2013 and reverses during March 2015. We observed an equatorial peak during the SSC period in March 2013, while EIA structures are generally weak in March 2015 event. This posit that ionospheric pre-storm behaviour in the EIA region can be better understood when the IMF-Bz and E-field are not significant. The observed distinctive response avowed the peculiarity of the electrodynamics intricacy in the Africa sector.

Bolaji, Olawale; Adekoya, Bolarinwa; Adebiyi, Shola; Adebesin, Babatunde; Ikubanni, Stephen;

Published by: Astrophysics and Space Science      Published on: jan

YEAR: 2022     DOI: 10.1007/s10509-021-04022-5

TEC; EIA; DDEF; Plasma reversal; PPEF; Pre-storm

The African equatorial ionization anomaly response to the St. Patrick’s Day storms of March 2013 and 2015

The ionosphere around the Equatorial Ionization Anomaly (EIA) region exhibits complex dynamics and responds markedly to the solar-magnetospheric energy and momentum. In this paper, the hourly total electron content (TEC) variations in response to the EIA structure in Africa to the 2013 and 2015 St. Patrick’s Day storms is investigated using data obtained from a chain of GPS receivers located in the Africa region. The TEC variations are characterized based on the convective magnetospheric dynamo fields, neutral wind circulation, and zonal electric fields. Generally, the result indicates that the TEC variations are consistent with the different directions of the interplanetary fields during the different phases of the storms. We observed reverse EIA structures in the main phase of the March 2015 storm, likely to be related to the intense PPEF and strong equatorward wind, which imposed a westward zonal electric field at the equator. A similar equatorial peak observed during the recovery phase is associated with DDEF, poleward wind and plasma convergence. Furthermore, the TEC variations also indicate hemispheric asymmetries during the storms. During the main phase of the storm, the TEC variation is more enhanced in the Northern Hemisphere in March 2013 and reverses during March 2015. We observed an equatorial peak during the SSC period in March 2013, while EIA structures are generally weak in March 2015 event. This posit that ionospheric pre-storm behaviour in the EIA region can be better understood when the IMF-Bz and E-field are not significant. The observed distinctive response avowed the peculiarity of the electrodynamics intricacy in the Africa sector.

Bolaji, Olawale; Adekoya, Bolarinwa; Adebiyi, Shola; Adebesin, Babatunde; Ikubanni, Stephen;

Published by: Astrophysics and Space Science      Published on: jan

YEAR: 2022     DOI: 10.1007/s10509-021-04022-5

TEC; EIA; DDEF; Plasma reversal; PPEF; Pre-storm

The African equatorial ionization anomaly response to the St. Patrick’s Day storms of March 2013 and 2015

The ionosphere around the Equatorial Ionization Anomaly (EIA) region exhibits complex dynamics and responds markedly to the solar-magnetospheric energy and momentum. In this paper, the hourly total electron content (TEC) variations in response to the EIA structure in Africa to the 2013 and 2015 St. Patrick’s Day storms is investigated using data obtained from a chain of GPS receivers located in the Africa region. The TEC variations are characterized based on the convective magnetospheric dynamo fields, neutral wind circulation, and zonal electric fields. Generally, the result indicates that the TEC variations are consistent with the different directions of the interplanetary fields during the different phases of the storms. We observed reverse EIA structures in the main phase of the March 2015 storm, likely to be related to the intense PPEF and strong equatorward wind, which imposed a westward zonal electric field at the equator. A similar equatorial peak observed during the recovery phase is associated with DDEF, poleward wind and plasma convergence. Furthermore, the TEC variations also indicate hemispheric asymmetries during the storms. During the main phase of the storm, the TEC variation is more enhanced in the Northern Hemisphere in March 2013 and reverses during March 2015. We observed an equatorial peak during the SSC period in March 2013, while EIA structures are generally weak in March 2015 event. This posit that ionospheric pre-storm behaviour in the EIA region can be better understood when the IMF-Bz and E-field are not significant. The observed distinctive response avowed the peculiarity of the electrodynamics intricacy in the Africa sector.

Bolaji, Olawale; Adekoya, Bolarinwa; Adebiyi, Shola; Adebesin, Babatunde; Ikubanni, Stephen;

Published by: Astrophysics and Space Science      Published on: jan

YEAR: 2022     DOI: 10.1007/s10509-021-04022-5

TEC; EIA; DDEF; Plasma reversal; PPEF; Pre-storm

Chapter 4 - Energetic particle dynamics, precipitation, and conductivity

This chapter reviews cross-scale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere system via convection, precipitation, and conductance. It begins with an introduction into Earth’s plasma sheet characteristics including particles, plasma moments, and magnetic fields, and their dependence on solar wind and interplanetary magnetic field parameters. Section 4.2 transitions to observations of the magnetosphere convection, precipitation, and coupling with the ionosphere on multiple scales, with Section 4.3 focusing on related global modeling efforts for particle precipitation. This chapter describes basic concepts and principles of major pitch angle scattering processes—wave-particle interactions and field-line curvature scattering—as well as the resulting precipitation and conductance. Section 4.4 continues the discussion started in 4.2 Observations of multiscale convection, precipitation, and conductivity, 4.3 Simulating particle precipitation of magnetospheric origin in global models regarding the resulting ionosphere conductance, delving more deeply into empirical and data assimilative techniques. This chapter describes techniques used over the years to observe and model precipitation and conductance on multiple scales.

Gabrielse, Christine; Kaeppler, Stephen; Lu, Gang; Wang, Chih-Ping; Yu, Yiqun; Nishimura, Yukitoshi; Verkhoglyadova, Olga; Deng, Yue; Zhang, Shun-Rong;

Published by:       Published on: jan

YEAR: 2022     DOI: 10.1016/B978-0-12-821366-7.00002-0

Conductance; Conductivity; Convection; particle precipitation

Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm

During emergency events, we could significantly depend on the stable operation of radio communication, navigation, and radars. The ionosphere, especially its auroral regions

Edemskiy, Ilya; Yasyukevich, Yury;

Published by: Remote Sensing      Published on:

YEAR: 2022     DOI: 10.3390/rs14215486

Performance Analysis of Ionospheric TECmodelsoverthe Africanregion during the geomagnetic storm of March 2015

This paper investigates the diurnal variations of modelled and observed Vertical Total Electron Content (VTEC) over the African region (40oN to+ 40oS, 25oW to 65oE) obtained from

Devanaboyina, Venkata; , others;

Published by:       Published on:

YEAR: 2022     DOI: 10.21203/rs.3.rs-1695991/v1

Importance of lower atmospheric forcing and magnetosphere-ionosphere coupling in simulating neutral density during the February 2016 geomagnetic storm

During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in eg, the dynamics, composition

Maute, Astrid; Lu, Gang; Knipp, Delores; Anderson, Brian; Vines, Sarah;

Published by: Frontiers in Astronomy and Space Sciences      Published on:

YEAR: 2022     DOI: 10.3389/fspas.2022.932748

Neutral composition information in ICON EUV dayglow observations

Since the earliest space‐based observations of Earth s atmosphere, ultraviolet (UV) airglow has proven a useful resource for remote sensing of the ionosphere and thermosphere. The

Tuminello, Richard; England, Scott; Sirk, Martin; Meier, Robert; Stephan, Andrew; Korpela, Eric; Immel, Thomas; Mende, Stephen; Frey, Harald;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030592

Occurrence of Ionospheric irregularities over Brazil and Africa during the 2019 Antarctic minor sudden stratospheric warming

The influence of sudden stratospheric warming (SSW) on the ionosphere and ionospheric irregularities has been studied extensively over the years. However, majority of these

Agyei-Yeboah, Ebenezer; Fagundes, Paulo; Tardelli, Alexandre; Pillat, Valdir; Vieira, Francisco; Arcanjo, Mateus;

Published by: Advances in Space Research      Published on:

YEAR: 2022     DOI: 10.1016/j.asr.2022.08.065

Occurrence of Ionospheric irregularities over Brazil and Africa during the 2019 Antarctic minor sudden stratospheric warming

The influence of sudden stratospheric warming (SSW) on the ionosphere and ionospheric irregularities has been studied extensively over the years. However, majority of these

Agyei-Yeboah, Ebenezer; Fagundes, Paulo; Tardelli, Alexandre; Pillat, Valdir; Vieira, Francisco; Arcanjo, Mateus;

Published by: Advances in Space Research      Published on:

YEAR: 2022     DOI: 10.1016/j.asr.2022.08.065

Exospheric Temperature Measured by NASA-GOLD Under Low Solar Activity: Comparison With Other Data Sets

Exospheric temperature is one of the key parameters in constructing thermospheric models and has been extensively studied with in situ observations and remote sensing. The Global-scale Observations of the Limb and Disk (GOLD) at a geosynchronous vantage point provides dayglow limb images for two longitude sectors, from which we can estimate the terrestrial exospheric temperature since 2018. In this paper, we investigate climatological behavior of the exospheric temperature measured by GOLD. The temperature has positive correlations with solar and geomagnetic activity and exhibits a morning-afternoon asymmetry, both of which agree with previous studies. We have found that the arithmetic sum of F10.7 (solar) and Ap (geomagnetic) indices is highly correlated with the exospheric temperature, explaining ∼64\% of the day-to-day variability. Furthermore, the exospheric temperature has good correlation with thermospheric parameters (e.g., neutral temperature, O2 density, and NO emission index) sampled at various heights above ∼130 km, in spite of the well-known thermal gradient below ∼200 km. However, thermospheric temperature at altitudes around 100 km is not well correlated with the GOLD exospheric temperature. The result implies that effects other than thermospheric heating by solar Extreme Ultraviolet and geomagnetic activity take control below a threshold altitude that exists between ∼100 and ∼130 km.

Park, Jaeheung; Evans, Joseph; Eastes, Richard; Lumpe, Jerry; van den Ijssel, Jose; Englert, Christoph; Stevens, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA030041

Aura/MLS; exospheric temperature; GOLD; ICON; swarm; TIMED/SABER

Creating a Database to Identify High-Latitude Scintillation Signatures With Unsupervised Machine Learning

In high latitudes, Global Navigation Satellite System (GNSS) signals experience scintillation due to moving irregularity structures in the ionosphere. These develop as a result of different physical mechanisms, which are as yet principally described on an elementary level for certain storm cases and events. Since there are years of GNSS data available from stations around the globe, we are investigating an unsupervised Machine Learning approach to extract a large variety of groups of scintillation events with similar features. We create a database containing high-rate scintillation events from two geomagnetic storm cases and several stations in the high-latitude region of the Northern hemisphere. By clustering high-rate signatures in signal phase and power according to their major signal characteristics with an agglomerative hierarchical clustering, it is possible to extract different groups of similar types of scintillation signatures. As a result of this study, the database of scintillation signatures in various locations in the auroral oval and polar cap evolves and will be further expanded beyond the storm cases studied in this paper. These can then be linked to the geomagnetic conditions and dynamics in the ionosphere through additional datasets from other instruments, therefore potentially helping us to get a further insight into the ionospheric irregularity physics.

Bals, Anna-Marie; Thakrar, Chintan; Deshpande, Kshitija;

Published by: IEEE Journal of Radio Frequency Identification      Published on:

YEAR: 2022     DOI: 10.1109/JRFID.2022.3163913

Databases; Feature extraction; Fluctuations; global navigation satellite system; GNSS data noise elimination; GNSS scintillation; Indexes; Instruments; ionospheric scintillation event detection; Radiofrequency identification; unsupervised machine learning

Occurrence statistics of horse collar aurora

Bower, Gemma; Milan, Stephen; Paxton, Larry; Anderson, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI:

Empirical modelling of SSUSI derived auroral ionization rates

Bender, Stefan; Espy, Patrick; Paxton, Larry;

Published by:       Published on:

YEAR: 2022     DOI:

Height-integrated polar cap conductances during an average substorm

Carter, Jennifer; Milan, Steven; Lester, Mark; Forsyth, Colin; Paxton, Larry; Gjerloev, Jesper; Anderson, Brian;

Published by:       Published on:

YEAR: 2022     DOI:

Lobe Reconnection and Cusp-Aligned Auroral Arcs

Abstract Following the St. Patrick s Day (17 March) geomagnetic storm of 2013, the interplanetary magnetic field had near-zero clock angle for almost two days. Throughout this period multiple cusp-aligned auroral arcs formed in the polar regions; we present observations of, and provide a new explanation for, this poorly understood phenomenon. The arcs were observed by auroral imagers onboard satellites of the Defense Meteorological Satellite Program. Ionospheric flow measurements and observations of energetic particles from the same satellites show that the arcs were produced by inverted-V precipitation associated with upward field-aligned currents (FACs) at shears in the convection pattern. The large-scale convection pattern revealed by the Super Dual Auroral Radar Network and the corresponding FAC pattern observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment suggest that dual-lobe reconnection was ongoing to produce significant closure of the magnetosphere. However, we propose that once the magnetosphere became nearly closed complicated lobe reconnection geometries arose that produced interleaving of regions of open and closed magnetic flux and spatial and temporal structure in the convection pattern that evolved on timescales shorter than the orbital period of the DMSP spacecraft. This new model naturally explains many features of cusp-aligned arcs, including why they focus in from the nightside toward the cusp region.

Milan, S.; Bower, G.; Carter, J.; Paxton, L.; Anderson, B.; Hairston, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: https://doi.org/10.1029/2021JA030089

Impact of Soft Electron Precipitation on the Thermospheric Neutral Mass Density During Geomagnetic Storms: GITM Simulations

In this study, the impact of improving soft (0.1–1 keV) electron precipitation on the F-region neutral mass density has been evaluated using the Global Ionosphere Thermosphere Model (GITM). Two types of electron energy spectra having the same total energy flux and average energy but different spectral shapes have been used to specify the electron precipitation in GITM. One is the Maxwellian spectrum and the other is from an empirical model, Auroral Spectrum and High-Latitude Electric field variabilitY (ASHLEY), which provides stronger (up to 2–3 orders of magnitude) soft electron precipitations than the Maxwellian spectrum. Data-model comparisons indicate that the storm-time orbital averaged neutral density can be increased by 10\%–40\% and is more consistent with the observation if the non-Maxwellian ASHLEY spectrum is used. This study reveals the importance of accurate soft electron precipitation specifications in the whole auroral zone to improving the F-region neutral mass density estimations.

Zhu, Qingyu; Deng, Yue; Sheng, Cheng; Anderson, Philip; Bukowski, Aaron;

Published by: Geophysical Research Letters      Published on:

YEAR: 2022     DOI: 10.1029/2021GL097260

ASHLEY; GITM; neutral mass density; soft electron precipitation

Impact of Soft Electron Precipitation on the Thermospheric Neutral Mass Density During Geomagnetic Storms: GITM Simulations

In this study, the impact of improving soft (0.1–1 keV) electron precipitation on the F-region neutral mass density has been evaluated using the Global Ionosphere Thermosphere Model (GITM). Two types of electron energy spectra having the same total energy flux and average energy but different spectral shapes have been used to specify the electron precipitation in GITM. One is the Maxwellian spectrum and the other is from an empirical model, Auroral Spectrum and High-Latitude Electric field variabilitY (ASHLEY), which provides stronger (up to 2–3 orders of magnitude) soft electron precipitations than the Maxwellian spectrum. Data-model comparisons indicate that the storm-time orbital averaged neutral density can be increased by 10\%–40\% and is more consistent with the observation if the non-Maxwellian ASHLEY spectrum is used. This study reveals the importance of accurate soft electron precipitation specifications in the whole auroral zone to improving the F-region neutral mass density estimations.

Zhu, Qingyu; Deng, Yue; Sheng, Cheng; Anderson, Philip; Bukowski, Aaron;

Published by: Geophysical Research Letters      Published on:

YEAR: 2022     DOI: 10.1029/2021GL097260

ASHLEY; GITM; neutral mass density; soft electron precipitation

Large-Scale Traveling Atmospheric and Ionospheric Disturbances Observed in GUVI With Multi-Instrument Validations

This study presents multi-instrument observations of persistent large-scale traveling ionosphere/atmospheric disturbances (LSTIDs/LSTADs) observed during moderately increased auroral electrojet activity and a sudden stratospheric warming in the polar winter hemisphere. The Global Ultraviolet Imager (GUVI), Gravity field and steady-state Ocean Circulation Explorer, Scanning Doppler Imaging Fabry–Perot Interferometers, and the Poker Flat Incoherent Scatter Radar are used to demonstrate the presence of LSTIDs/LSTADs between 19 UT and 5 UT on 18–19 January 2013 over the Alaska region down to lower midlatitudes. This study showcases the first use of GUVI for the study of LSTADs. These novel GUVI observations demonstrate the potential for the GUVI far ultraviolet emissions to be used for global-scale studies of waves and atmospheric disturbances in the thermosphere, a region lacking in long-term global measurements. These observations typify changes in the radiance from around 140 to 180 km, opening a new window into the behavior of the thermosphere.

Bossert, Katrina; Paxton, Larry; Matsuo, Tomoko; Goncharenko, Larisa; Kumari, Komal; Conde, Mark;

Published by: Geophysical Research Letters      Published on:

YEAR: 2022     DOI: 10.1029/2022GL099901

Geomagnetic and Solar Dependencies of Midlatitude E-Region Irregularity Occurrence Rate: A Climatology Based on Wuhan VHF Radar Observations

By using Wuhan VHF radar, we show the morphological features of E-region field-aligned irregularity (FAI) occurrence at Wuhan during 2015–2020. Statistical results present that E-region FAI occurrence reaches a maximum after sunset in summer season. According to Doppler spectrum features, type-2 irregularity is predominantly observed at Wuhan. In addition, we observed a remarkable correlation between E-region FAI occurrence and geomagnetic activity, which includes periods of positive correlation and negative correlation depending on different geomagnetic conditions. The strong negative correlation also exists between E-region FAI occurrence and solar activity. In our observed results, we find that E-region FAI occurrence shows a strong linkage with local sporadic E (ES) layer. A quantitative analysis of linear theory of plasma instability in the E-region at midlatitudes is also presented in our study. The calculated results of linear growth rate indicate the importance of plasma density gradient of local ES layer and field-line-integrated Pedersen conductivity on the generation of E-region FAI. The geomagnetic and solar variations of E-region FAI occurrence are also discussed in this study, which show a dependence on the geomagnetic and solar variations of both meteor rate and medium-scale traveling ionospheric disturbance occurrence.

Liu, Yi; Zhou, Chen; Xu, Tong; Deng, Zhongxin; Du, Zhitao; Lan, Ting; Tang, Qiong; Zhu, Yunzhou; Wang, Zhuangkai; Zhao, Zhengyu;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029597

Aspects related to variability of radiative cooling by NO in lower thermosphere, TEC and O/N2 correlation, and diffusion of NO into mesosphere during the Halloween storms

Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late October 2003. The Halloween storm comprised of three intense-geomagnetic storms. The variability of NO infrared flux during these storm events and its connection to the strength of the geomagnetic storms were found to be different in contrast to similar super storms.

Ranjan, Alok; Krishna, MV; Kumar, Akash; Sarkhel, Sumanta; Bharti, Gaurav; Bender, Stefan; Sinnhuber, Miriam;

Published by: Advances in Space Research      Published on:

YEAR: 2022     DOI: 10.1016/j.asr.2022.07.035

Time Delay Integration Imaging of the Nighttime Ionosphere from the ICON Observatory

TIMED GUVI was on a high inclination orbit changing local time relatively slowly and missing a great deal of the equatorward low latitude regions at the wrong local times.

Mende, SB; Frey, HU; England, SL; Immel, TJ; Eastes, RW;

Published by: Space Science Reviews      Published on:

YEAR: 2022     DOI: 10.1007/s11214-022-00928-w

Spatial and temporal confinement of the ionospheric responses during the St. Patrick s Day storm of March 2015

The present study provides a multi‐instrument analysis of the ionospheric response to the effects of the St. Patrick s Day storm of 17–18 March 2015. Simultaneous observations from 85

Kader, Sk; Dashora, N; Niranjan, K;

Published by: Space Weather      Published on:

YEAR: 2022     DOI: 10.1029/2022SW003157

2021

Model of the E-Layer Critical Frequency for the Auroral Region

A new foE model for the auroral region is constructed; the model is based on an analysis of the models of auroral electron precipitations, the boundaries of the discrete and diffusive aurora, the main ionospheric trough, and measurements of the E-layer critical frequency foE. The model is an analytical model. It consists of solar (foEsol) and auroral (foEavr) components. The solar component of the model does not depend of geomagnetic activity. It depends on solar activity via the F index, which is determined by the solar radio emission flux at a wavelength of 10.7 cm over the previous day and three solar rotations. The auroral component of the model does not depend of solar activity. It depends on geomagnetic activity via the effective Kp* index, which takes into account the prehistory of changes in this activity. The model indirectly takes into account the dependence of the relative contribution of  foEsol and  foEavr to the total  foE value on the difference in the heights of the maxima of these model components via the addition of a coefficient. The model qualitatively takes into account the effect of the winter anomaly in foEavr via the addition of a function. It is found that the errors of the new foE model in the auroral region at the nighttime hours are much lower than those in the international IRI model (with the STORM-E option) for both moderate and high geomagnetic activity. For example, the comparison with data from ionospheric stations shows that the IRI model underestimates foE in these conditions by approximately a factor of 2 on average. The average shift in foE relative to the experimental data in the new model does not exceed 20\%.

Deminov, M.; Shubin, V.; Badin, V.;

Published by: Geomagnetism and Aeronomy      Published on: sep

YEAR: 2021     DOI: 10.1134/S0016793221050054

Assessment of the predictive capabilities of NIGTEC model over Nigeria during geomagnetic storms

The Nigerian Total Electron Content (NIGTEC) is a regional neural network-based model developed by the Nigerian Centre for Atmospheric Research to predict the Total Electron Content (TEC) at any location over Nigeria. The addition of the disturbance storm time (Dst) index as one of NIGTEC s input layer neurons raises a question of its accuracy during geomagnetic storms. In this paper, the capability of NIGTEC in predicting the variability of TEC during geomagnetic storms has been assessed. TEC data predicted by NIGTEC is compared with those derived from Global Navigation Satellite System (GNSS) over Lagos (6.5oN, 3.4oE) and Toro (10.1oN, 9.12oE) during the intense storms in March 2012 and 2013. The model s predictive capability is evaluated in terms of Root Mean Square Error (RMSE). NIGTEC reproduced a fairly good storm time morphology in VTEC driven by the prompt penetration electric field and the increase in thermospheric O/N2. Nevertheless, it failed to predict the increase in TEC after the intense sudden impulse of 60 nT on 8 March 2012. And it could not capture the changes in VTEC driven by the storm time equatorward neutral wind especially during 18:00–24:00 UT. Consequently, the RMSEs were higher during this time window, and the highest RMSE value was obtained during the most intense storm in March 2012.

Amaechi, Paul; Humphrey, Ibifubara; Adewoyin, David;

Published by: Geodesy and Geodynamics      Published on: nov

YEAR: 2021     DOI: 10.1016/j.geog.2021.09.003

geomagnetic storm; global navigation satellite system; Nigerian Total Electron Content (NIGTEC); total electron content

Latitudinal Dependence of Ionospheric Responses to Some Geomagnetic Storms during Low Solar Activity

The Latitudinal dependence in the response of the Ionospheric F2-layer electron density (NmF2) and peak height (hmF2) to three geomagnetic storms of May and August 2010 has been examined. The data-sets used for the study were obtained from Ilorin, Nigeria (1.87° S/76.67° E), San Vito, Italy (34.68° N/90.38° E), Hermanus, South Africa (42.34° S/82.15° E), and Pruhonice, Czech Republic (45.66° N/90.38° E) geomagnetic coordinates. The quiet time result shows that the rise in NmF2 began earlier at San Vito, followed by Pruhonice. The rate of ionization was observed to be highest in Ilorin, while, the rate of decay in NmF2 is faster at Hermanus. For disturbed NmF2 condition, remarkable similarities in the NmF2 responses during geomagnetic storms were recorded from Hermanus in the mid-latitude and Ilorin, an equatorial station. NmF2 enhancements (\textgreater6 hours) that is consistent with the increase in hmF2 were observed at all the mid-latitude stations during the main phase of the 02 May, 2010 storm, without any noticeable change over ILN. Similarly, 12 hours of positive phase was observed at ILN and HMN, with 30 hours of NmF2 depletions at PRN and SVT during the recovery phase. ILN is in the equatorial Trough, so most of the NmF2 produced at this region is lifted to the higher latitudes by the fountain effect during the main phase. The suppression of the zonal electric field at ILN is responsible for the NmF2 enhancement during the recovery phase, while the mid-latitude responses have been attributed to the effect of the thermospheric winds and neutral composition changes.

Joshua, B.; Adeniyi, J.; Olawepo, A.; Rabiu, Babatunde; Daniel, Okoh; Adebiyi, S.; Adebesin, B.; Ikubanni, S.; Abdurahim, B.;

Published by: Geomagnetism and Aeronomy      Published on: may

YEAR: 2021     DOI: 10.1134/S0016793221030063

Electric field; Electron density; Geomagnetic storms; magnetosphere; peak height

Latitudinal Dependence of Ionospheric Responses to Some Geomagnetic Storms during Low Solar Activity

The Latitudinal dependence in the response of the Ionospheric F2-layer electron density (NmF2) and peak height (hmF2) to three geomagnetic storms of May and August 2010 has been examined. The data-sets used for the study were obtained from Ilorin, Nigeria (1.87° S/76.67° E), San Vito, Italy (34.68° N/90.38° E), Hermanus, South Africa (42.34° S/82.15° E), and Pruhonice, Czech Republic (45.66° N/90.38° E) geomagnetic coordinates. The quiet time result shows that the rise in NmF2 began earlier at San Vito, followed by Pruhonice. The rate of ionization was observed to be highest in Ilorin, while, the rate of decay in NmF2 is faster at Hermanus. For disturbed NmF2 condition, remarkable similarities in the NmF2 responses during geomagnetic storms were recorded from Hermanus in the mid-latitude and Ilorin, an equatorial station. NmF2 enhancements (\textgreater6 hours) that is consistent with the increase in hmF2 were observed at all the mid-latitude stations during the main phase of the 02 May, 2010 storm, without any noticeable change over ILN. Similarly, 12 hours of positive phase was observed at ILN and HMN, with 30 hours of NmF2 depletions at PRN and SVT during the recovery phase. ILN is in the equatorial Trough, so most of the NmF2 produced at this region is lifted to the higher latitudes by the fountain effect during the main phase. The suppression of the zonal electric field at ILN is responsible for the NmF2 enhancement during the recovery phase, while the mid-latitude responses have been attributed to the effect of the thermospheric winds and neutral composition changes.

Joshua, B.; Adeniyi, J.; Olawepo, A.; Rabiu, Babatunde; Daniel, Okoh; Adebiyi, S.; Adebesin, B.; Ikubanni, S.; Abdurahim, B.;

Published by: Geomagnetism and Aeronomy      Published on: may

YEAR: 2021     DOI: 10.1134/S0016793221030063

Electric field; Electron density; Geomagnetic storms; magnetosphere; peak height

Latitudinal Dependence of Ionospheric Responses to Some Geomagnetic Storms during Low Solar Activity

The Latitudinal dependence in the response of the Ionospheric F2-layer electron density (NmF2) and peak height (hmF2) to three geomagnetic storms of May and August 2010 has been examined. The data-sets used for the study were obtained from Ilorin, Nigeria (1.87° S/76.67° E), San Vito, Italy (34.68° N/90.38° E), Hermanus, South Africa (42.34° S/82.15° E), and Pruhonice, Czech Republic (45.66° N/90.38° E) geomagnetic coordinates. The quiet time result shows that the rise in NmF2 began earlier at San Vito, followed by Pruhonice. The rate of ionization was observed to be highest in Ilorin, while, the rate of decay in NmF2 is faster at Hermanus. For disturbed NmF2 condition, remarkable similarities in the NmF2 responses during geomagnetic storms were recorded from Hermanus in the mid-latitude and Ilorin, an equatorial station. NmF2 enhancements (\textgreater6 hours) that is consistent with the increase in hmF2 were observed at all the mid-latitude stations during the main phase of the 02 May, 2010 storm, without any noticeable change over ILN. Similarly, 12 hours of positive phase was observed at ILN and HMN, with 30 hours of NmF2 depletions at PRN and SVT during the recovery phase. ILN is in the equatorial Trough, so most of the NmF2 produced at this region is lifted to the higher latitudes by the fountain effect during the main phase. The suppression of the zonal electric field at ILN is responsible for the NmF2 enhancement during the recovery phase, while the mid-latitude responses have been attributed to the effect of the thermospheric winds and neutral composition changes.

Joshua, B.; Adeniyi, J.; Olawepo, A.; Rabiu, Babatunde; Daniel, Okoh; Adebiyi, S.; Adebesin, B.; Ikubanni, S.; Abdurahim, B.;

Published by: Geomagnetism and Aeronomy      Published on: may

YEAR: 2021     DOI: 10.1134/S0016793221030063

Electric field; Electron density; Geomagnetic storms; magnetosphere; peak height

Echo occurrence in the southern polar ionosphere for the SuperDARN Dome C East and Dome C North radars

In this paper, echo occurrence rates for the Dome C East (DCE) and the new Dome C North (DCN) radars are studied. We report the ionospheric and ground scatter echo occurrence rates for selected periods around equinoxes and solstices in the final part of the solar cycle XXIV. The occurrence maps built in Altitude Adjusted Corrected Geomagnetic latitude and Magnetic Local Time coordinates show peculiar patterns highly variable with season. The comparisons of the radar observations with the International Reference Ionosphere model electron density and with ray tracing simulations allow us to explain the major features of observed patterns in terms of electron density variations. The study shows the great potential of the DCE and DCN radar combination to the Super Dual Auroral Radar Network (SuperDARN) convection mapping in terms of monitoring key regions of the high-latitude ionosphere critical for understanding of the magnetospheric dynamics.

Marcucci, Maria; Coco, Igino; Massetti, Stefano; Pignalberi, Alessio; Forsythe, Victoriya; Pezzopane, Michael; Koustov, Alexander; Longo, Simona; Biondi, David; Simeoli, Enrico; Consolini, Giuseppe; Laurenza, Monica; Marchaudon, Aurélie; Satta, Andrea; Cirioni, Alessandro; De Simone, Angelo; Olivieri, Angelo; Baù, Alessandro; Salvati, Alberto;

Published by: Polar Science      Published on: jun

YEAR: 2021     DOI: 10.1016/j.polar.2021.100684

Echo occurrence; IRI model; Polar cap radars; Ray-tracing

Features of topside ionospheric background over China and its adjacent areas obtained by the ZH-1 satellite

\textlessp\textgreaterTopside ionospheric background distribution and its seasonal variations over China and its adjacent areas, e.g. 0°-54°N and 70°-140°E, are studied using the in situ electron density (Ne) measurements obtained by the LAP payload on board the ZH-1 (CSES) satellite. Results are as followings:(1) Regularities consistent with results from previous studies are shown on the latitudinal extension, longitudinal distribution, and seasonal variations of the EIA (Equatorial Ionization Anomaly) phenomenon in the study area. (2) In the mid-latitude regions, there is a relative low-value zone for the daytime Ne, which shows relative high-value data during nighttime. Nighttime Ne enhancement is shown in all the mid-latitudes for all the seasons when comparing the nighttime and daytime Ne together. The equatorward extension of this phenomenon is in contrast to the poleward extension of the EIA phenomenon; when this phenomenon extends, the EIA shrinks, and vice versa. (3) For the daytime Ne, semiannual anomaly demonstrates a regular pattern, in which the two peaks start in spring and autumn equinoxes at the Equator, then evolve toward the summer solstice with increasing latitude, and finally combine into one summer time peak in mid-latitudes; seasonal anomaly only appears within latitude 4° of the Equator. While for the nighttime Ne, semiannual anomaly appears between latitude 22° and 50°, and seasonal anomaly appears below latitude 22°. (4) The monthly average background of the ionosphere generally shows that the nighttime Ne varies more dramatically than the daytime Ne. For the daytime Ne, observations in both equinoxes and summer solstice vary more violently than that in winter solstice, and observations in EIA regions vary more violently than that in mid-latitude regions. And for the nighttime Ne, observation variations are roughly similar in all seasons and latitudes. (5) Features of the ionospheric background, which fluctuates with time and space in the study area, are relatively complicated, therefore it is necessary to pay attention to the ionosphere background and its fluctuations when conducting studies on ionosphere related scientific problems. Based on the above results and comparisons with other simultaneous observations, we believe that the relative variations of the in situ Ne measurements from the ZH-1 satellite are in consistent with that from other datasets. Besides the well-known ionosphere features, some features which were not found in previous studies are found from the ionosphere background in the study area. The in situ Ne measurements from the ZH-1 satellite are a good data source for systematic studies on ionosphere-related scientific problems due to the similar local times and locations of the observations.\textless/p\textgreater

XiuYing, Wang; DeHe, Yang; ZiHan, Zhou; Jing, C.; Na, Zhou; XuHui, Shen;

Published by: Chinese Journal of Geophysics      Published on: feb

YEAR: 2021     DOI: 10.6038/cjg2021O0152

Transpolar Arcs During a Prolonged Radial Interplanetary Magnetic Field Interval

Transpolar arcs (TPAs) are believed to predominantly occur under northward interplanetary magnetic field (IMF) conditions with their hemispheric asymmetry controlled by the Sun-Earth (radial) component of the IMF. In this study, we present observations of TPAs that appear in both the northern and southern hemispheres even during a prolonged interval of radially oriented IMF. The Defense Meteorological Satellite Program (DMSP) F16 and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellites observed TPAs on the dawnside polar cap in both hemispheres (one TPA structure in the southern hemisphere and two in the northern hemisphere) during an interval of nearly earthward-oriented IMF on October 29, 2005. The southern hemisphere TPA and one of the northern hemisphere TPAs are associated with electron and ion precipitation and mostly sunward plasma flow (with shears) relative to their surroundings. Meanwhile, the other TPA in the northern hemisphere is associated with an electron-only precipitation and antisunward flow relative to its surroundings. Our observations indicate the following: (a) the TPA formation is not limited to northward IMF conditions; (b) the TPAs can be located on both closed field lines rooted in the polar cap of both hemispheres and open field lines connected to the northward field lines draped over one hemisphere of the magnetopause. We believe that the TPAs presented here are the result of both indirect and direct processes of solar wind energy transfer to the high-latitude ionosphere.

Park, Jong-Sun; Shi, Quan; Nowada, Motoharu; Shue, Jih-Hong; Kim, Khan-Hyuk; Lee, Dong-Hun; Zong, Qiu-Gang; Degeling, Alexander; Tian, An; Pitkänen, Timo; Zhang, Yongliang; Rae, Jonathan; Hairston, Marc;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029197

radial IMF; solar wind-magnetosphere-ionosphere coupling; transpolar arc

First Results From the Retrieved Column O/N2 Ratio From the Ionospheric Connection Explorer (ICON): Evidence of the Impacts of Nonmigrating Tides

In near-Earth space, variations in thermospheric composition have important implications for thermosphere-ionosphere coupling. The ratio of O to N2 is often measured using far-UV airglow observations. Taking such airglow observations from space, looking below the Earth s limb allows for the total column of O and N2 in the ionosphere to be determined. While these observations have enabled many previous studies, determining the impact of nonmigrating tides on thermospheric composition has proved difficult, owing to a small contamination of the signal by recombination of ionospheric O+. New ICON observations of far-UV are presented here, and their general characteristics are shown. Using these, along with other observations and a global circulation model, we show that during the morning hours and at latitudes away from the peak of the equatorial ionospheric anomaly, the impact of nonmigrating tides on thermospheric composition can be observed. During March–April 2020, the column O/N2 ratio was seen to vary by 3–4\% of the zonal mean. By comparing the amplitude of the variation observed with that in the model, both the utility of these observations and a pathway to enable future studies is shown.

England, Scott; Meier, R.; Frey, Harald; Mende, Stephen; Stephan, Andrew; Krier, Christopher; Cullens, Chihoko; Wu, Yen-Jung; Triplett, Colin; Sirk, Martin; Korpela, Eric; Harding, Brian; Englert, Christoph; Immel, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029575

airglow; atmospheric composition; Atmospheric tides; thermosphere

First Look at a Geomagnetic Storm With Santa Maria Digisonde Data: F Region Responses and Comparisons Over the American Sector

Santa Maria Digisonde data are used for the first time to investigate the F region behavior during a geomagnetic storm. The August 25, 2018 storm is considered complex due to the incidence of two Interplanetary Coronal Mass Ejections and a High-Speed Solar Wind Stream (HSS). The F 2 layer critical frequency (f o F 2) and its peak height (h m F 2) collected over Santa Maria, near the center of the South American Magnetic Anomaly (SAMA), are compared with data collected from Digisondes installed in the Northern (NH) and Southern (SH) Hemispheres in the American sector. The deviation of f o F 2 (Df o F 2) and h m F 2 (Dh m F 2) are used to quantify the ionospheric storm effects. Different F region responses were observed during the main phase (August 25–26), which is attributed to the traveling ionospheric disturbances and disturbed eastward electric field during nighttime. The F region responses became highly asymmetric between the NH and SH at the early recovery phase (RP, August 26) due to a combination of physical mechanisms. The observed asymmetries are interpreted as caused by modifications in the thermospheric composition and a rapid electrodynamic mechanism. The persistent enhanced thermospheric [O]/[N2] ratio observed from August 27 to 29 combined with the increased solar wind speed induced by the HSS and IMF B z fluctuations seem to be effective in causing the positive ionospheric storm effects and the shift of the Equatorial Ionization Anomaly crest to higher than typical latitudes. Consequently, the most dramatic positive ionospheric storm during the RP occurred over Santa Maria (∼120\%).

Moro, J.; Xu, J.; Denardini, C.; Resende, L.; Neto, P.; Da Silva, L.; Silva, R.; Chen, S.; Picanço, G.; Carmo, C.; Liu, Z.; Yan, C.; Wang, C.; Schuch, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028663

Digisonde; Equatorial ionization anomaly; F-region; Ionospheric storm; SAMA; space weather

First Look at a Geomagnetic Storm With Santa Maria Digisonde Data: F Region Responses and Comparisons Over the American Sector

Santa Maria Digisonde data are used for the first time to investigate the F region behavior during a geomagnetic storm. The August 25, 2018 storm is considered complex due to the incidence of two Interplanetary Coronal Mass Ejections and a High-Speed Solar Wind Stream (HSS). The F 2 layer critical frequency (f o F 2) and its peak height (h m F 2) collected over Santa Maria, near the center of the South American Magnetic Anomaly (SAMA), are compared with data collected from Digisondes installed in the Northern (NH) and Southern (SH) Hemispheres in the American sector. The deviation of f o F 2 (Df o F 2) and h m F 2 (Dh m F 2) are used to quantify the ionospheric storm effects. Different F region responses were observed during the main phase (August 25–26), which is attributed to the traveling ionospheric disturbances and disturbed eastward electric field during nighttime. The F region responses became highly asymmetric between the NH and SH at the early recovery phase (RP, August 26) due to a combination of physical mechanisms. The observed asymmetries are interpreted as caused by modifications in the thermospheric composition and a rapid electrodynamic mechanism. The persistent enhanced thermospheric [O]/[N2] ratio observed from August 27 to 29 combined with the increased solar wind speed induced by the HSS and IMF B z fluctuations seem to be effective in causing the positive ionospheric storm effects and the shift of the Equatorial Ionization Anomaly crest to higher than typical latitudes. Consequently, the most dramatic positive ionospheric storm during the RP occurred over Santa Maria (∼120\%).

Moro, J.; Xu, J.; Denardini, C.; Resende, L.; Neto, P.; Da Silva, L.; Silva, R.; Chen, S.; Picanço, G.; Carmo, C.; Liu, Z.; Yan, C.; Wang, C.; Schuch, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028663

Digisonde; Equatorial ionization anomaly; F-region; Ionospheric storm; SAMA; space weather

Conjugate Photoelectron Energy Spectra Derived From Coincident FUV and Radio Measurements

We present a method for estimating incident photoelectrons energy spectra as a function of altitude by combining global scale far-ultraviolet (FUV) and radio-occultation (RO) measurements. This characterization provides timely insights important for accurate interpretation of ionospheric parameters inferred from the recently launched Ionospheric Connection Explorer (ICON) observations. Quantification of photoelectron impact is enabled by the fact that conjugate photoelectrons (CPEs) directly affect FUV airglow emissions but not RO measurements. We demonstrate a technique for estimation of photoelectron fluxes and their spectra by combining coincident ICON and COSMIC2 measurements and show that a significant fraction of ICON-FUV measurements is affected by CPEs during the winter solstice. A comparison of estimated photoelectron fluxes with measured photoelectron spectra is used to gain further insights into the estimation method and reveals consistent values within 10–60 eV.

Urco, J.; Kamalabadi, F.; Kamaci, U.; Harding, B.; Frey, H.; Mende, S.; Huba, J.; England, S.; Immel, T.;

Published by: Geophysical Research Letters      Published on:

YEAR: 2021     DOI: 10.1029/2021GL095839

airglow; conjugate photolectrons; COSMIC2; energy spectra; ICON

Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian-Australian sectors: August 25--26, 2018 geomagnetic storm

On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian-Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on vertical E × B upward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2 ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020, https://doi.org/10.1029/2020JA027981). Interestingly, we observed that a double-humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020, https://doi.org/10.1029/2020JA027981) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym-H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm s MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian-Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian-Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian-Australian sector.

Bolaji, O.; Fashae, J.; Adebiyi, S.; Owolabi, Charles; Adebesin, B.; Kaka, R.; Ibanga, Jewel; Abass, M.; Akinola, O.; Adekoya, B.; Younas, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA029068

double-humped increase (DHI); equatorial ionization anomaly (EIA); prompt penetrating electric field (PPEF); storm time equatorward wind

Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian-Australian sectors: August 25--26, 2018 geomagnetic storm

On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian-Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on vertical E × B upward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2 ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020, https://doi.org/10.1029/2020JA027981). Interestingly, we observed that a double-humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020, https://doi.org/10.1029/2020JA027981) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym-H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm s MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian-Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian-Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian-Australian sector.

Bolaji, O.; Fashae, J.; Adebiyi, S.; Owolabi, Charles; Adebesin, B.; Kaka, R.; Ibanga, Jewel; Abass, M.; Akinola, O.; Adekoya, B.; Younas, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA029068

double-humped increase (DHI); equatorial ionization anomaly (EIA); prompt penetrating electric field (PPEF); storm time equatorward wind

Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian-Australian sectors: August 25--26, 2018 geomagnetic storm

On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian-Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on vertical E × B upward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2 ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020, https://doi.org/10.1029/2020JA027981). Interestingly, we observed that a double-humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020, https://doi.org/10.1029/2020JA027981) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym-H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm s MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian-Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian-Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian-Australian sector.

Bolaji, O.; Fashae, J.; Adebiyi, S.; Owolabi, Charles; Adebesin, B.; Kaka, R.; Ibanga, Jewel; Abass, M.; Akinola, O.; Adekoya, B.; Younas, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA029068

double-humped increase (DHI); equatorial ionization anomaly (EIA); prompt penetrating electric field (PPEF); storm time equatorward wind

FTA: A Feature Tracking Empirical Model of Auroral Precipitation

The Feature Tracking of Aurora (FTA) model was constructed using 1.5 years of Polar Ultraviolet Imager data and is based on tracking a cumulative energy grid in 96 magnetic local time (MLT) sectors. The equatorward boundary, poleward boundary, and 19 cumulative energy bins are tracked with the energy flux and the latitudinal position. With AE increasing, the equatorward boundary moves to lower latitudes everywhere, while the poleward boundary moves poleward in the 2300–0300 MLT region and equatorward in other MLT sectors. This results in the aurora getting wider on the nightside and becoming narrower on the dayside. The peak intensity of the aurora in each MLT sector is almost linearly related to AE, with the global peak moving from pre-midnight to post-midnight as geomagnetic activity increases. Ratios between the Lyman-Birge-Hopfield-long and -short models allow the average energy to be calculated. Predictions from the FTA and two other auroral models were compared to the measurements by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Spectrographic Imagers (SSUSI) on March 17, 2013. Among the three models, the FTA model specified the most confined patterns with the highest energy flux, agreeing with the spatial and temporal evolution of SSUSI measurements better and predicted auroral power (AP) better during higher activity levels (SSUSI AP \textgreater 20 GW). The Fuller-Rowell and Evans (1987) and FTA models specified very similar average energy compared with SSUSI measurements, doing slightly better by ∼1 keV than the OVATION Prime model.

Wu, Chen; Ridley, Aaron; DeJong, Anna; Paxton, Larry;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2020SW002629

Auroral Precipitation Model; cumulative energy bins; data-model comparisons; M-I coupling; statistical analyses

Field-Aligned Current During an Interval of BY-Dominated Interplanetary-Field; Modeled-to-Observed Comparisons

Carter, Jennifer; Samsonov, AA; Milan, Stephen; Branduardi-Raymont, Graziella; Ridley, Aaron; Paxton, Larry; Anderson, Brian; Waters, Colin; Edwards, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI:

Investigating Geocoronal Absorption for Wavelength Calibration of Sounding Rockets

Donders, Nicolas; Winebarger, Amy; Kankelborg, Charles; Vigil, Genevieve; Paxton, Larry; Zank, Gary;

Published by:       Published on:

YEAR: 2021     DOI:

Progresses and Challenges to specifying the IT system during weak storms

Deng, Yue; Heelis, Roderick; Paxton, Larry; Lyons, Larry; Nishimura, Toshi; Zhang, Shunrong; Bristow, Bill; Maute, Astrid; Sheng, Cheng; Zhu, Qingyu; , others;

Published by:       Published on:

YEAR: 2021     DOI:

Thermospheric ionization from auroral particle precipitation observed by the SSUSI satellite instruments

Solar, auroral, and radiation belt electrons enter the atmosphere at polar regions leading to ionization and affecting its chemistry. Climate models usually parametrize this ionization and the related changes in chemistry based on satellite particle measurements. Precise measurements of the particle and energy influx into the upper atmosphere are difficult because they vary substantially in location and time. Widely used particle data are derived from the POES and GOES satellite measurements which provide electron and proton spectra. We present the electron energy and flux measurements from the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) instruments on board the Defense Meteorological Satellite Program (DMSP) satellites. This formation of now three operating satellites observes the auroral zone in the UV from which electron energies and fluxes are inferred in the range from 2 keV to 20 keV. We use these observed electron energies and fluxes to calculate ionization rates and electron densities in the upper mesosphere and lower thermosphere (≈ 80–200 km). We present our validation study of the SSUSI-derived electron densities to those measured by the ground-based EISCAT radar stations. We find that with the current standard parametrizations, the SSUSI-derived auroral electron densities (90–150 km) agree well with EISCAT measurements, with differences between +/- 20% for F18, and +/- 50 % for F17. The largest differences are at the lower end of the altitude range because there the electron densities decline very rapidly.

Bender, Stefan; Espy, Patrick; Paxton, Larry;

Published by: Earth and Space Science Open Archive ESSOAr      Published on:

YEAR: 2021     DOI: 10.1002/essoar.10506056.1

Validation of SSUSI-derived auroral electron densities: comparisons to EISCAT data

Bender, Stefan; Espy, Patrick; Paxton, Larry;

Published by:       Published on:

YEAR: 2021     DOI:



  1      2      3      4      5      6