Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

The African equatorial ionization anomaly response to the St. Patrick’s Day storms of March 2013 and 2015

The ionosphere around the Equatorial Ionization Anomaly (EIA) region exhibits complex dynamics and responds markedly to the solar-magnetospheric energy and momentum. In this paper, the hourly total electron content (TEC) variations in response to the EIA structure in Africa to the 2013 and 2015 St. Patrick’s Day storms is investigated using data obtained from a chain of GPS receivers located in the Africa region. The TEC variations are characterized based on the convective magnetospheric dynamo fields, neutral wind circulation, and zonal electric fields. Generally, the result indicates that the TEC variations are consistent with the different directions of the interplanetary fields during the different phases of the storms. We observed reverse EIA structures in the main phase of the March 2015 storm, likely to be related to the intense PPEF and strong equatorward wind, which imposed a westward zonal electric field at the equator. A similar equatorial peak observed during the recovery phase is associated with DDEF, poleward wind and plasma convergence. Furthermore, the TEC variations also indicate hemispheric asymmetries during the storms. During the main phase of the storm, the TEC variation is more enhanced in the Northern Hemisphere in March 2013 and reverses during March 2015. We observed an equatorial peak during the SSC period in March 2013, while EIA structures are generally weak in March 2015 event. This posit that ionospheric pre-storm behaviour in the EIA region can be better understood when the IMF-Bz and E-field are not significant. The observed distinctive response avowed the peculiarity of the electrodynamics intricacy in the Africa sector.

Bolaji, Olawale; Adekoya, Bolarinwa; Adebiyi, Shola; Adebesin, Babatunde; Ikubanni, Stephen;

Published by: Astrophysics and Space Science      Published on: jan

YEAR: 2022     DOI: 10.1007/s10509-021-04022-5

TEC; EIA; DDEF; Plasma reversal; PPEF; Pre-storm

Response of the Ionospheric TEC to SSW and Associated Geomagnetic Storm Over the American Low Latitudinal Sector

During the sudden stratospheric warming (SSW) event in 2013, we investigated the American low latitude around 75°W. We used 12 Global Positioning System (GPS) receivers, a pair of magnetometers, and the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite airglow instrument to unveil the total electron content (TEC), inferred vertical drift, and the changes in the neutral composition, respectively. A major SSW characterized the 2013 SSW event with the main phase (7–27 January 2013) overlapped by a minor geomagnetic storm (17 January 2013). The late morning inferred downward-directed E X B drift did not support the varying equatorial ionization anomaly (EIA) signature during the SSW onset (7 January 2013). The mid-January (15–16 January 2013) witnessed enhancement in the varying inferred upward-directed E X B drift at both hemispheres. On 17 January 2013, there were reductions in the varying inferred upward-directed E X B drift at both hemispheres. Generally, the SSW effect on TEC around 15–16 January 2013 is more pronounced than the SSW onset. During the mid-January (15–16 January 2013), the higher northern EIA crests are facilitated majorly by the SSW compared to the photo-ionization that primarily enabled the southern crests. On 17 January 2013, the combined effect of photo-ionization and SSW contribution was majorly responsible for the slight reduction in the northern crest. In the southern hemisphere, photo-ionization played the lead role as the SSW, and the minor geomagnetic storm roles are secondary in enhancing the southern crest.

Fashae, J.; Bolaji, O.; Rabiu, A.;

Published by: Space Weather      Published on:

YEAR: 2022     DOI: 10.1029/2021SW002999

equatorial ionization anomaly (EIA); geomagnetic storm; low-latitude ionosphere; sudden stratospheric wind (SSW)

2021

Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian-Australian sectors: August 25--26, 2018 geomagnetic storm

On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian-Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on vertical E × B upward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2 ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020, https://doi.org/10.1029/2020JA027981). Interestingly, we observed that a double-humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020, https://doi.org/10.1029/2020JA027981) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym-H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm s MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian-Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian-Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian-Australian sector.

Bolaji, O.; Fashae, J.; Adebiyi, S.; Owolabi, Charles; Adebesin, B.; Kaka, R.; Ibanga, Jewel; Abass, M.; Akinola, O.; Adekoya, B.; Younas, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA029068

double-humped increase (DHI); equatorial ionization anomaly (EIA); prompt penetrating electric field (PPEF); storm time equatorward wind

2018

Response of GPS-TEC in the African equatorial region to the two recent St. Patrick s day storms

The 2015 St. Patrick’s Day storm is one of the most intense geomagnetic storm in this present solar cycle (SYM-H=-213nT). In this paper, we investigate the response of the African low

Ikubanni, SO; Adebiyi, SJ; Adebesin, BO; Dopamu, KO; Joshua, BW; Bolaji, OS; Adekoya, BJ;

Published by: International Journal of Civil Engineering and Technology      Published on:

YEAR: 2018     DOI:



  1