Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

Evaluating Auroral Forecasts Against Satellite Observations

The aurora is a readily visible phenomenon of interest to many members of the public. However, the aurora and associated phenomena can also significantly impact communications, ground-based infrastructure, and high-altitude radiation exposure. Forecasting the location of the auroral oval is therefore a key component of space weather forecast operations. A version of the OVATION-Prime 2013 auroral precipitation model (Newell et al., 2014, https://doi.org/10.1002/2014sw001056) was used by the UK Met Office Space Weather Operations Centre (MOSWOC). The operational implementation of the OVATION-Prime 2013 model at the UK Met Office delivered a 30-min forecast of the location of the auroral oval and the probability of observing the aurora. Using weather forecast evaluation techniques, we evaluate the ability of the OVATION-Prime 2013 model forecasts to predict the location and probability of the aurora occurring by comparing the forecasts with auroral boundaries determined from data from the IMAGE satellite between 2000 and 2002. Our analysis shows that the operational model performs well at predicting the location of the auroral oval, with a relative operating characteristic (ROC) score of 0.82. The model performance is reduced in the dayside local time sectors (ROC score = 0.59) and during periods of higher geomagnetic activity (ROC score of 0.55 for Kp = 8). As a probabilistic forecast, OVATION-Prime 2013 tends to underpredict the occurrence of aurora by a factor of 1.1–6, while probabilities of over 90\% are overpredicted.

Mooney, M.; Marsh, M.; Forsyth, C.; Sharpe, M.; Hughes, T.; Bingham, S.; Jackson, D.; Rae, I.; Chisham, G.;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2020SW002688

AURORA; auroral forecasting; forecast verification; OVATION-Prime 2013; ROC scores; space weather

2019

Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars

The Super Dual Auroral Radar Network (SuperDARN) is a network of high-frequency (HF) radars located in the high- and mid-latitude regions of both hemispheres that is operated under international cooperation. The network was originally designed for monitoring the dynamics of the ionosphere and upper atmosphere in the high-latitude regions. However, over the last approximately 15 years, SuperDARN has expanded into the mid-latitude regions. With radar coverage that now extends continuously from auroral to sub-auroral and mid-latitudes, a wide variety of new scientific findings have been obtained. In this paper, the background of mid-latitude SuperDARN is presented at first. Then, the accomplishments made with mid-latitude SuperDARN radars are reviewed in five specified scientific and technical areas: convection, ionospheric irregularities, HF propagation analysis, ion-neutral interactions, and magnetohydrodynamic (MHD) waves. Finally, the present status of mid-latitude SuperDARN is updated and directions for future research are discussed.

Nishitani, Nozomu; Ruohoniemi, John; Lester, Mark; Baker, Joseph; Koustov, Alexandre; Shepherd, Simon; Chisham, Gareth; Hori, Tomoaki; Thomas, Evan; Makarevich, Roman; , others;

Published by: Progress in Earth and Planetary Science      Published on:

YEAR: 2019     DOI: 10.1186/s40645-019-0270-5



  1