Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2022

Low-latitude plasma blobs above Africa: Exploiting GOLD and multi-satellite in situ measurements

Low-latitude plasma blobs are localized density enhancements of electron density that are occasionally observed in the night-time tropical ionosphere. Two-dimensional (2D) imaging of this phenomenon has been rare and frequently restricted to Central/South America, which is densely covered with ground-based airglow imagers and Global Navigation Satellite System (GNSS) receivers. In Africa, on the contrary, no 2D image of a blob has been reported. Here we present two low-latitude blob events above Africa, one in the Northern summer and the other in winter, in the 2-dimensional Far-UltraViolet (FUV) images from the Global-scale Observations of the Limb and Disk (GOLD) mission. Additionally, multiple satellites (four spacecraft per event) on the Low-Earth-Orbit (LEO) encountered the blob events, some within the GOLD images and some outside. The LEO data support the robustness of GOLD observations and bridge time gaps between the consecutive images. Properties of the two blob events above Africa generally support the conclusions in a previous case study for Central/South America. Plasma therein exhibited higher O+ fraction and faster ion flow toward outer L-shells than the ambient. The blobs were conjugate to locally intensified Equatorial Ionization Anomaly crests without conspicuous equatorward-westward propagation. Our results demonstrate the usefulness of GOLD and multiple LEO satellites in monitoring the ionosphere above Africa, which is a fascinating laboratory of low-latitude electrodynamics but still waiting for more observatories to be deployed.

Park, Jaeheung; Min, Kyoung; Eastes, Richard; Chao, Chi; Kim, Hee-Eun; Lee, Junchan; Sohn, Jongdae; Ryu, Kwangsun; Seo, Hoonkyu; Yoo, Ji-Hyeon; Lee, Seunguk; Woo, Changho; Kim, Eo-Jin;

Published by: Advances in Space Research      Published on: may

YEAR: 2022     DOI: 10.1016/j.asr.2022.05.021

COSMIC-2; GOLD; ICON; Low-latitude blobs; NextSat-1; swarm

Coordinated Observations of Rocket Exhaust Depletion: GOLD, Madrigal TEC, and Multiple Low-Earth-Orbit Satellites

A plasma density hole was created in the ionosphere by a rocket launch from Cape Canaveral, Florida near local sunset on 30 August 2020, which is called rocket exhaust depletion (RED). The hole persisted for several hours into the night and was observed in total electron content (TEC) maps, the Global-scale Observations of the Limb and Disk (GOLD) imager, and multiple low-earth-orbit satellites. The RED created a nightglow pit in the GOLD 135.6 nm image. Swarm satellites found that the RED exhibited insignificant changes in electron/ion temperature and field-aligned currents. On the other hand, magnetic field strength was enhanced inside the RED by a few tenths of a nanotesla. Assimilation data products of the Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2) mission reveal that ionospheric slab thickness increased at the center of the RED, which is supported by combined analyses of the GOLD and TEC data. The RED did not host conspicuous substructures that are stronger and longer-lasting than the ambient plasma did.

Park, Jaeheung; Rajesh, P.; Ivarsen, Magnus; Lin, Charles; Eastes, Richard; Chao, Chi; Coster, Anthea; Clausen, Lasse; Burchill, Johnathan;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029909

GOLD; Madrigal TEC; COSMIC-2; Norsat-1; rocket exhaust depletion; swarm



  1