Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2022

Analytic and numerical methods for the Abel transform of exponential functions for planetary and cometary atmospheres

Line-of-sight integration of emissions from planetary and cometary atmospheres is the Abel transform of the emission rate, under the spherical symmetry assumption. Indefinite integrals constructed from the Abel transform integral are useful for implementing remote sensing data analysis methods, such as the numerical inverse Abel transform. We propose analytical expressions obtained by a suitable, non-alternating, series development to compute those indefinite integrals. We establish expressions allowing absolute accuracy control of the convergence of these series and illustrate how this accuracy depends on the number of terms involved in the series computation. We compare the analytical method with numerical computation techniques, which are found to be sufficiently accurate as well. Inverse Abel transform fitting is then tested in order to establish that the expected emission rate profiles can be retrieved from the observation of both planetary and cometary atmospheres. We show that the method is robust, i.e. that it can be applied even when the properties of the observed atmosphere depart from the assumed ones, especially when Tikhonov regularization is included. A first application is conducted over observation of comet 46P/Wirtanen, showing some variability, possibly attributable to an evolution of the contamination by dust and icy grains.

Hubert, B.; Munhoven, G.; Moulane, Y.; Hutsemekers, D.; Manfroid, J.; Opitom, C.; Jehin, E.;

Published by: Icarus      Published on: jan

YEAR: 2022     DOI: 10.1016/j.icarus.2021.114654

Abel transform; Aeronomy; Coma; Cometary atmospheres; Comets; Data reduction techniques; Planetary atmospheres.

2015

The August 2011 URSI World Day campaign: Initial results

During a 10-day URSI World Day observational campaign beginning on August 1, 2011, an isolated, major geomagnetic storm occurred. On August 5,\ Kp\ reached values of 8-and\ Dst\ dropped to -113\ nT. The occurrence of this isolated storm in the middle of a 10-day URSI World Day campaign provides and unprecedented opportunity to observe the coupling of solar wind energy into the magnetosphere and to evaluate the varied effects that occur in the coupled magnetosphere\textendashionosphere\textendashthermosphere system. Dramatic changes in the ionosphere are seen at every one of the active radar stations, extending from Greenland down to equatorial Peru in the American sector and at middle latitudes in Ukraine. Data from TIMED and THEMIS are shown to support initial interpretations of the observations, where we focus on processes in the middle latitude afternoon sector during main phase, and the formation of a dense equatorial ionosphere during storm recovery. The combined measurements strongly suggest that the changes in ionospheric conditions observed after the main storm phase can be attributed in large part to changes in the stormtime thermosphere. This is through the generation of disturbance dynamo winds and also global neutral composition changes that either reduce or enhance plasma densities in a manner that depends mainly upon latitude. Unlike larger storms with possibly more sustained forcing, this storm exhibits minimal effects of persistent meridional stormtime wind drag, and little penetration of solar wind electric potentials to low latitudes. It is, therefore, an outstanding example of an impulsive event that exhibits longer-term effects through modification of the background atmosphere.

Immel, Thomas; Liu, Guiping; England, Scott; Goncharenko, Larisa; Erickson, Philip; Lyashenko, Mykhaylo; Milla, Marco; Chau, Jorge; Frey, Harald; Mende, Stephen; Zhou, Qihou; Stromme, Anja; Paxton, Larry;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1016/j.jastp.2015.09.005

Aeronomy; Ionosphere; Radar; thermosphere



  1