Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2022

The Role of High Energy Photoelectrons on the Dissociation of Molecular Nitrogen in Earth's Ionosphere

Soft x-ray radiation from the sun is responsible for the production of high energy photoelectrons in the D and E regions of the ionosphere, where they deposit most of their ionization

Samaddar, Srimoyee; Venkataramani, Karthik; Yonker, Justin; Bailey, Scott; , others;

Published by: arXiv preprint arXiv:2209.11185      Published on:

YEAR: 2022     DOI: 10.48550/arXiv.2209.11185

Sounding Rocket Observation of Nitric Oxide in the Polar Night

An altitude profile of Nitric Oxide (NO) in the 80–110 km altitude range was measured in the polar night from a sounding rocket on 27 January 2020. The observations were made using the technique of stellar occultation with a UV spectrograph observing the γ (1,0) band of NO near 215 nm. The tangent point for the altitude profile was at 74° latitude, a location that had been in darkness for 80 days. The retrieved slant column density profile is interpreted using an assumed four-parameter analytic profile shape. Retrievals of the fitting parameters yield a profile with a peak NO concentration of 2.2 ± 0.7 × 108 cm−3 at 93.5 ± 4.1 km. The observations were made during a time of minimum solar and geomagnetic activity. The NO maximum retrieved from the rocket profile is significantly larger in abundance and lower in altitude than other observations on the same day at nearby latitudes just outside the polar night. These rocket-borne results are consistent with NO that is created over the course over the polar winter and is confined to high latitudes in the polar night by the mesospheric polar vortex. During the course of that confinement the abundance increases due to the lack of photodissociation, allowing the NO to descend. We show that the observed descent can be explained by eddy diffusion-driven transport, though vertical advection cannot be ruled out.

Bailey, Scott; McClintock, William; Carstens, Justin; Thurairajah, Brentha; Das, Saswati; Randall, Cora; Harvey, Lynn; Siskind, David; Stevens, Michael; Venkataramani, Karthik;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA030257

Lower thermosphere; mesosphere; nitric oxide; polar night; sounding rocket; stellar occultation

The Role of Solar Soft X-rays Irradiance in Thermospheric Structure

We use a new Atmospheric Chemistry and Energetics one-dimensional (ACE1D) thermospheric model to show that the energies deposited by the solar soft x-rays in the lower

Samaddar, Srimoyee; Venkataramani, Karthik; Bailey, Scott; , others;

Published by: arXiv preprint arXiv:2209.10543      Published on:

YEAR: 2022     DOI: 10.48550/arXiv.2209.10543

A Model of the Globally-averaged Thermospheric Energy Balance

Similar to the MSIS data, we bin the GUVI temperatures by latitude It should be noted that GUVI observations at high values of While the GUVI observations cannot be compared directly

Venkataramani, Karthik; Bailey, Scott; Samaddar, Srimoyee; Yonker, Justin;

Published by: arXiv preprint arXiv:2211.05301      Published on:

YEAR: 2022     DOI: 10.48550/arXiv.2211.05301

2018

Comparison of the Thermospheric Nitric Oxide Emission Observations and the GITM Simulations: Sensitivity to Solar and Geomagnetic Activities

An accurate estimate of the energy budget (heating and cooling) of the ionosphere and thermosphere, especially during space weather events, has been a challenge. The abundance of Nitric Oxide (NO), a minor species in the thermosphere, is an important component of energy balance here because its production comes from energy sources able to break the strong bond of molecular nitrogen, and infrared emissions from NO play an important role in thermospheric cooling. Recent studies have significantly improved our understanding of NO chemistry and its relationship to energy deposition in the thermospheric photochemical reactions. In this study, the chemical scheme in the Global Ionosphere Thermosphere Model (GITM) is updated to better predict the lower thermospheric NO responses to solar and geomagnetic activity. We investigate the sensitivity of the 5.3-micron NO emission to F10.7 and Ap indices by comparing the global integrated emission from GITM with an empirical proxy derived from the Sounding of the Atmosphere using Broadband Emission Radiometry measurements. GITM\textquoterights total emission agrees well within 20\% of the empirical values. The updated chemistry scheme significantly elevates the level of integrated emission compared to the previous scheme. The inclusion of N2(A)-related production of NO contributes an additional 5-25\% to the emission. Localized enhancement of ~70\% in column density and a factor of three in column emission are simulated at a moderate geomagnetic level.

Lin, Cissi; Deng, Yue; Venkataramani, Karthik; Yonker, Justin; Bailey, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA025310

Comparison of the Thermospheric Nitric Oxide Emission Observations and the Global Ionosphere-Thermosphere Model (GITM) Simulations: Sensitivity to Solar and Geomagnetic Activities

The magnitude of enhancement observed in column density agrees well with the cases observed by TIMED/GUVI −8 W/m3) agree well with TIMED/SABER and GUVI measurements.

Lin, Cissi; Deng, Yue; Venkataramani, Karthik; Yonker, Justin; Bailey, Scott;

Published by: arXiv preprint arXiv:1807.01380      Published on:

YEAR: 2018     DOI: https://doi.org/10.48550/arXiv.1807.01380

2016

Parameterization of Nitric Oxide Emissions in the Thermosphere

Lin, CYT; Deng, Yue; Venkataramani, Karthik; Yonker, Justin; Bailey, Scott;

Published by:       Published on:

YEAR: 2016     DOI:



  1