Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2021

Statistics of GPS TEC at the northern EIA crest region of the Indian subcontinent during the solar cycle 24 (2013-2018): comparison with IRI-2016 and IRI-2012 models

In this study the statistics of ionospheric total electron content (TEC), derived from a GSV4004B dual-frequency Global Positioning System (GPS) receiver at Agartala station (23.450°N, 91.150°E) located in northern equatorial ionization anomaly (EIA) crest region of the Indian subcontinent, is reported with a performance analysis of IRI-2016 and IRI-2012 models during the ascending, maxima, declining and minima phases (2013-2018) of the solar cycle 24. Variations of model total electron content, as obtained from the IRI-2016 and IRI-2012 for the three options of topside electron density namely NeQuick, IRI 2001 and IRI 01-corr, are compared with the observed total electron content during different periods of interest viz. monthly, seasonal, annual and the correlations with solar activity parameters viz. sunspot number (SSN), 10.7 cm solar radio flux (F10.7), solar EUV flux, are also investigated. All the three options of IRI-2016 and IRI-2012 models show an earlier occurrence of diurnal maximum total electron content, as compared to the observed diurnal maximum GPS total electron content, throughout all the months during the complete period of observation. As the solar activity decreases (from 2015 to 2018), the model starts underestimating GPS total electron content, which becomes significantly high during the very low solar activity period of 2017-18 for all the months. IRI-2016 model underestimates the GPS total electron content before the hours of diurnal maximum and overestimates after the hours of diurnal maximum in the years from 2013-2018. IRI-2012 model underestimates the GPS total electron content before the hours of diurnal maximum and overestimates after the hours of diurnal maximum in the years from 2013-17 but overestimate during the whole day in the year of 2018. Overestimation by IRI-2012 is much more than that by IRI-2016 in the year of 2018. Predictions given by IRI-2016 are better than that given by IRI-2012 for our region. The seasonal mean maximum total electron content values are highest during the spring equinox months and lowest during the winter months except the year of 2014 and 2013. The correlation analysis, between the GPS total electron content and solar indices, show that the correlation coefficient is higher for the solar EUV flux, as compared to the sunspot number (SSN) and 10.7 cm solar radio flux (F10.7).

Patari, Arup; Paul, Bapan; Guha, Anirban;

Published by: Astrophysics and Space Science      Published on: may

YEAR: 2021     DOI: 10.1007/s10509-021-03950-6

EIA; EUV flux; F10.7; GPS TEC; IRI-2012 TEC; IRI-2016 TEC; SSN

2019

Conjugate hemispheric response of earth\textquoterights ionosphere due to geomagnetic storms occurred during two equinox periods

The ionospheric response of two geomagnetic storms of 2016 occurred during spring equinox (5-8 March, 2016) and autumn equinox (12-15 October, 2016) is investigated using the total electron content (TEC) data derived from Global Positioning System (GPS) receivers located in the equatorial ionization anomaly (EIA) crest regions at northern hemisphere (Tripura University, Agartala, India) and southern hemisphere (Karratha, Australia). While in southern EIA station ionospheric responses for the two storms are found to be symmetric but in northern EIA station the responses are completely asymmetric. The observations are explained by the contribution of storm-time prompt penetration electric fields (PPEFs), disturb dynamo electric fields (DDEFs), disturbed meridional (equatorward) winds as well as the neutral compositional changes over low latitudes.

Patari, Arup; De, Barin; Guha, Anirban; Paul, Bapan;

Published by: Journal of Physics: Conference Series      Published on: 10/2019

YEAR: 2019     DOI: 10.1088/1742-6596/1330/1/012004

Response of the Earth\textquoterights equatorial ionosphere during the severe G4-class geomagnetic storm of 8 th September 2017

Equatorial and low latitude ionospheric response of the 8th September 2017 severe G4-class geomagnetic storm is investigated using the total electron content (TEC) data from a longitudinal chain of global positioning system (GPS) receivers over Asian, African and American sectors. During the main phase, a positive storm effect is observed over Asian sector, a complete negative storm effect over African sector and both are observed over American sector. A sharp increase in peak TEC is observed over the complete longitudinal chain during the recovery phase. The results show the decisive contribution of prompt penetration electric fields (PPEFs) and disturbance dynamo electric fields (DDEFs), storm time disturbed meridional (equatorward) wind as well as the neutral compositional changes over equatorial and low latitudes in the observed ionospheric storm effects.

Paul, Bapan; Patari, Arup; De, Barin; Guha, Anirban;

Published by: Journal of Physics: Conference Series      Published on: 10/2019

YEAR: 2019     DOI: 10.1088/1742-6596/1330/1/012005

Response of the Earth’s equatorial ionosphere during the severe G4-class geomagnetic storm of 8th September 2017

Paul, Bapan; Patari, Arup; De, Barin; Guha, Anirban;

Published by:       Published on:

YEAR: 2019     DOI:

Conjugate hemispheric response of earth’s ionosphere due to geomagnetic storms occurred during two equinox periods

Patari, Arup; De, Barin; Guha, Anirban; Paul, Bapan;

Published by:       Published on:

YEAR: 2019     DOI:



  1