Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2014

Quantification of upper thermosphere composition and its dynamic charge exchange coupling to the mid-latitude topside ionosphere

Waldrop, Lara; Paxton, Larry; Aponte, Nestor; Gonzalez, Sixto;

Published by:       Published on:

YEAR: 2014     DOI:

2008

A data-model comparative study of ionospheric positive storm phase in the midlatitude F region

Lu, G; Goncharenko, LP; Coster, AJ; Richmond, AD; Roble, RG; Aponte, N; Paxton, LJ;

Published by:       Published on:

YEAR: 2008     DOI:

2007

Observations of a positive storm phase on September 10, 2005

In this study, we present multi-instrument observations of a strong positive phase of ionospheric storm, which occurred on September 10, 2005 during a moderate geomagnetic storm with minimum Dst=-60\ nT and maximum Kp=6\textendash. The daytime electron density measured by the Millstone Hill incoherent scatter radar (42.6\textdegreeN, 288.5\textdegreeE) increased after 13\ UT (\~8\ LT) compared with that before the storm. This increase is observed throughout the daytime, lasts for about 9\ h, and covers F-region altitudes above \~230\ km. At the altitude of 300\ km, the maximum increase in Ne reaches a factor of 3 by 19:30\textendash20:00\ UT and is accompanied by a \~1000\ K decrease in electron temperature, a \~100\textendash150\ K increase in ion temperature, and a strong upward drift. Observations by Arecibo ISR (18.3\textdegreeN, 293.3\textdegreeE) reveal similar features, with the maximum increase in electron density reaching a factor of 2.5 at 21:30\ UT, i.e. 1.5\textendash2\ h later than over Millstone Hill. The GPS TEC data show that the increase in electron density observed at Millstone Hill and Arecibo is only a part of a global picture reflected in TEC. The increase in TEC reaches a factor of 2 and covers middle and low latitudes at 19\ UT. At later times this increase moves to lower latitudes. A combination of mechanisms were involved in generation of positive phase. The penetration electric field resulted in Ne enhancements at subauroral and middle latitudes, the TAD/TID played an important role at middle and lower latitudes, and increase in O/N2 ratio could contribute to the observed positive phase at middle and lower latitudes. The results show the importance of an upward vertical drift at \~140\textendash250\ km altitude, which is observed for sustained period of time and assists in the convergence of ionization into the F-region.

Goncharenko, L.P.; Foster, J.C.; Coster, A.J.; Huang, C.; Aponte, N.; Paxton, L.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2007

YEAR: 2007     DOI: 10.1016/j.jastp.2006.09.011

F-region; geomagnetic storm; Ionosphere; positive phase



  1