Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2022

The 15 January 2022 Hunga Tonga Eruption History as Inferred From Ionospheric Observations

On 15 January 2022, the Hunga Tonga-Hunga Ha’apai submarine volcano erupted violently and triggered a giant atmospheric shock wave and tsunami. The exact mechanism of this extraordinary eruptive event, its size and magnitude are not well understood yet. In this work, we analyze data from the nearest ground-based receivers of Global Navigation Satellite System to explore the ionospheric total electron content (TEC) response to this event. We show that the ionospheric response consists of a giant TEC increase followed by a strong long-lasting depletion. We observe that the explosive event of 15 January 2022 began at 04:05:54UT and consisted of at least five explosions. Based on the ionospheric TEC data, we estimate the energy released during the main major explosion to be between 9 and 37 Megatons in trinitrotoluene equivalent. This is the first detailed analysis of the eruption sequence scenario and the timeline from ionospheric TEC observations.

Astafyeva, E.; Maletckii, B.; Mikesell, T.; Munaibari, E.; Ravanelli, M.; Coisson, P.; Manta, F.; Rolland, L.;

Published by: Geophysical Research Letters      Published on:

YEAR: 2022     DOI: 10.1029/2022GL098827

co-volcanic ionospheric disturbances; eruption timeline; GNSS; Hunga Tonga eruption; Ionosphere; ionospheric geodesy

2018

AMICal Sat and ATISE: two space missions for auroral monitoring

A lack of observable quantities renders it generally difficult to confront models of Space Weather with experimental data and drastically reduces the forecast accuracy. This is especially

elemy, Mathieu; Kalegaev, Vladimir; Vialatte, Anne; Le Coarer, Etienne; Kerstel, Erik; Basaev, Alexander; Bourdarot, Guillaume; Prugniaux, Melanie; Sequies, Thierry; Rolland, Etienne; , others;

Published by:       Published on:

YEAR: 2018     DOI: 10.1051/swsc/2018035



  1