Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2021

Toward a Next Generation Particle Precipitation Model: Mesoscale Prediction Through Machine Learning (a Case Study and Framework for Progress)

We advance the modeling capability of electron particle precipitation from the magnetosphere to the ionosphere through a new database and use of machine learning (ML) tools to gain utility from those data. We have compiled, curated, analyzed, and made available a new and more capable database of particle precipitation data that includes 51 satellite years of Defense Meteorological Satellite Program (DMSP) observations temporally aligned with solar wind and geomagnetic activity data. The new total electron energy flux particle precipitation nowcast model, a neural network called PrecipNet, takes advantage of increased expressive power afforded by ML approaches to appropriately utilize diverse information from the solar wind and geomagnetic activity and, importantly, their time histories. With a more capable representation of the organizing parameters and the target electron energy flux observations, PrecipNet achieves a \textgreater50\% reduction in errors from a current state-of-the-art model oval variation, assessment, tracking, intensity, and online nowcasting (OVATION Prime), better captures the dynamic changes of the auroral flux, and provides evidence that it can capably reconstruct mesoscale phenomena. We create and apply a new framework for space weather model evaluation that culminates previous guidance from across the solar-terrestrial research community. The research approach and results are representative of the “new frontier” of space weather research at the intersection of traditional and data science-driven discovery and provides a foundation for future efforts.

McGranaghan, Ryan; Ziegler, Jack; Bloch, Téo; Hatch, Spencer; Camporeale, Enrico; Lynch, Kristina; Owens, Mathew; Gjerloev, Jesper; Zhang, Binzheng; Skone, Susan;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2020SW002684

space weather; magnetosphere-ionosphere coupling; data science; evaluation; machine learning; particle precipitation

Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 4. Polar Cap motions and origins of the Universal Time effect

We use the \textlessi\textgreateram\textlessi/\textgreater, \textlessi\textgreateran, as\textlessi/\textgreater and the \textlessi\textgreateraσ\textlessi/\textgreater geomagnetic indices to the explore a previously overlooked factor in magnetospheric electrodynamics, namely the inductive effect of diurnal motions of the Earth’s magnetic poles toward and away from the Sun caused by Earth’s rotation. Because the offset of the (eccentric dipole) geomagnetic pole from the rotational axis is roughly twice as large in the southern hemisphere compared to the northern, the effects there are predicted to be roughly twice the amplitude of those in the northern hemisphere. Hemispheric differences have previously been discussed in terms of polar ionospheric conductivities generated by solar photoionization, effects which we allow for by looking at the dipole tilt effect on the time-of-year variations of the indices. The electric field induced in a geocentric frame is shown to also be a significant factor and gives a modulation of the voltage applied by the solar wind flow in the southern hemisphere that is typically a ±30\% diurnal modulation for disturbed intervals rising to ±76\% in quiet times. For the northern hemisphere these are 15\% and 38\% modulations. Motion away from/towards the Sun reduces/enhances the directly-driven ionospheric voltages and reduces/enhances the magnetic energy stored in the tail and we estimate that approximately 10\% of the effect appears in directly driven ionospheric voltages and 90\% in changes of the rate of energy storage or release in the near-Earth tail. The hemispheric asymmetry in the geomagnetic pole offsets from the rotational axis is shown to be the dominant factor in driving Universal Time (\textlessi\textgreaterUT\textlessi/\textgreater) variations and hemispheric differences in geomagnetic activity. Combined with the effect of solar wind dynamic pressure and dipole tilt on the pressure balance in the near-Earth tail, the effect provides an excellent explanation of how the observed Russell-McPherron pattern with time-of-year \textlessi\textgreaterF\textlessi/\textgreater and \textlessi\textgreaterUT\textlessi/\textgreater in the driving power input into the magnetosphere is converted into the equinoctial \textlessi\textgreaterF\textlessi/\textgreater-\textlessi\textgreaterUT\textlessi/\textgreater pattern in average geomagnetic activity (after correction is made for dipole tilt effects on ionospheric conductivity), added to a pronounced \textlessi\textgreaterUT\textlessi/\textgreater variation with minimum at 02–10 UT. In addition, we show that the predicted and observed \textlessi\textgreaterUT\textlessi/\textgreater variations in average geomagnetic activity has implications for the occurrence of the largest events that also show the nett \textlessi\textgreaterUT\textlessi/\textgreater variation.

Lockwood, Mike; Haines, Carl; Barnard, Luke; Owens, Mathew; Scott, Chris; Chambodut, Aude; McWilliams, Kathryn;

Published by: Journal of Space Weather and Space Climate      Published on:

YEAR: 2021     DOI: 10.1051/swsc/2020077

2005

Orbital Drag-Atmospheric Density Concept of Operations2004 Update

The Global UV Imager (GUVI), a predecessor instrument to SSUSI, has shown promising, though limited, comparison to orbit-based densities. Current operations at the SCC rely on

Buell, Diane; Walterscheid, Richard; Marcos, Frank; Fuller-Rowell, Tim; Picone, J; Storz, Mark; Owens, Jerry;

Published by:       Published on:

YEAR: 2005     DOI:



  1