Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2021

Impact of the intense geomagnetic storm of August 2018 on the equatorial and low latitude ionosphere

We study the impact of an intense geomagnetic storm of 25–26 August 2018 on the equatorial and low latitude ionosphere over Asia, Africa, and America. For this purpose, we have used storm-time observations from multi-site ground-based Global Positioning System receivers and magnetic observatories located at equatorial and low latitudes along the three longitudes. The storm-time variation of the electron density is assessed by the global, regional, and vertical total electron content obtained from the GPS receiver data. Both positive phases of the storm and negative ones are observed in the three longitudinal sectors during the main phase until the late recovery phases of the storm. A significant increase in the electron density around the equatorial ionization anomaly crests is seen during the main phase of the storm. The storm-time response of the thermosphere is characterized by the global \$\mathrm\\frac\O\\N\_\2\\\\$maps provided by the Global Ultraviolet Spectrographic Imager onboard the satellite Thermosphere Ionosphere Mesosphere Energetics and Dynamics. The expected hemispheric asymmetry of the thermosphere can be associated with possible differences in heating and convection in the middle and lower latitudes. Moreover, the unprecedented behavior of the neutrals over the East-African and Asian longitudes can be attributed to the strong northward meridional wind circulations. Finally, the storm-induced disturbances of the horizontal component of the Earth’s magnetic field and the ionospheric electric currents have been investigated by ground-based magnetometers data. A large decrease in the horizontal component of the geomagnetic field is observed over the local dayside sector (Asian) that is associated with the enhanced ring current effect. The wavelet analysis of the magnetic data indicates the existence of short-term and diurnal oscillations during the storm period. These oscillations are associated with the prompt penetration and the disturbance of dynamo-electric fields. It can be inferred that physical factors such as the ionospheric electrodynamics, the thermosphere neutral composition, and the neutral wind circulations play an important role in the observed storm-time response of the ionosphere.

Imtiaz, Nadia; Hammou Ali, Omar; Rizvi, Haider;

Published by: Astrophysics and Space Science      Published on: nov

YEAR: 2021     DOI: 10.1007/s10509-021-04009-2

Disturbance dynamo electric field; global electron content; prompt penetration electric field; Vertical total electron content

2020

Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017

We study the impact of the geomagnetic storm of 7\textendash9\ September\ 2017 on the low- to mid-latitude ionosphere. The prominent feature of this solar event is the sequential occurrence of two SYM-H minima with values of -146 and -115 nT on 8\ September at 01:08 and 13:56 UT, respectively. The study is based on the analysis of data from the Global Positioning System (GPS) stations and magnetic observatories located at different longitudinal sectors corresponding to the Pacific, Asia, Africa and the Americas during the period 4\textendash14\ September\ 2017. The GPS data are used to derive the global, regional and vertical total electron content (vTEC) in the four selected regions. It is observed that the storm-time response of the vTEC over the Asian and Pacific sectors is earlier than over the African and American sectors. Magnetic observatory data are used to illustrate the variation in the magnetic field particularly, in its horizontal component. The global thermospheric neutral density ratio; i.e., O/N2 maps obtained from the Global UltraViolet Spectrographic Imager (GUVI) on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to characterize the storm-time response of the thermosphere. These maps exhibit a significant storm-time depletion of the O/N2 density ratio in the northern middle and lower latitudes over the western Pacific and American sectors as compared to the eastern Pacific, Asian and African sectors. However, the positive storm effects in the O/N2 ratio can be observed in the low latitudes and equatorial regions. It can be deduced that the storm-time thermospheric and ionospheric responses are correlated. Overall, the positive ionospheric storm effects appear over the dayside sectors which are associated with the ionospheric electric fields and the traveling atmospheric disturbances. It is inferred that a variety of space weather phenomena such as the coronal mass ejection, the high-speed solar wind stream and the solar radio flux are the cause of multiple day enhancements of the vTEC in the low- to mid-latitude ionosphere during the period 4\textendash14\ September\ 2017.

Imtiaz, Nadia; Younas, Waqar; Khan, Majid;

Published by: Annales Geophysicae      Published on: 03/2020

YEAR: 2020     DOI: 10.5194/angeo-38-359-2020

Response of the low-to mid-latitude ionosphere to the geomagnetic storm of September 2017

Imtiaz, Nadia; Younas, Waqar; Khan, Majid;

Published by:       Published on:

YEAR: 2020     DOI:



  1