Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2018

SSUSI and SSUSI-Lite: Providing space situational awareness and support for over 25 years

Paxton, Larry; Schaefer, Robert; Zhang, Yongliang; Kil, Hyosub; Hicks, John;

Published by: Johns Hopkins APL Technical Digest      Published on:

YEAR: 2018     DOI:

2016

SSUSI-lite: next generation far-ultraviolet sensor for characterizing geospace

Paxton, Larry; Hicks, John; Grey, Matthew; Parker, Charles; Hourani, Ramsay; Marcotte, Kathryn; Carlsson, Uno; Kerem, Samuel; Osterman, Steven; Maas, Bryan; , others;

Published by:       Published on:

YEAR: 2016     DOI:

2015

SSUSI-Lite: a far-ultraviolet hyper-spectral imager for space weather remote sensing

SSUSI-Lite is a far-ultraviolet (115-180nm) hyperspectral imager for monitoring space weather. The SSUSI and GUVI sensors, its predecessors, have demonstrated their value as space weather monitors. SSUSI-Lite is a refresh of the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) design that has flown on the Defense Meteorological Satellite Program (DMSP) spacecraft F16 through F19. The refresh updates the 25-year-old design and insures that the next generation of SSUSI/GUVI sensors can be accommodated on any number of potential platforms. SSUSI-Lite maintains the same optical layout as SSUSI, includes updates to key functional elements, and reduces the sensor volume, mass, and power requirements. SSUSI-Lite contains an improved scanner design that results in precise mirror pointing and allows for variable scan profiles. The detector electronics have been redesigned to employ all digital pulse processing. The largest decrease in volume, mass, and power has been obtained by consolidating all control and power electronics into one data processing unit.

Ogorzalek, Bernard; Osterman, Steven; Carlsson, Uno; Grey, Matthew; Hicks, John; Hourani, Ramsey; Kerem, Samuel; Marcotte, Kathryn; Parker, Charles; Paxton, Larry;

Published by:       Published on:

YEAR: 2015     DOI: 10.1117/12.2191701



  1