Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1 entries in the Bibliography.


Showing entries from 1 through 1


2022

On the impact of meridional wind circulation changes in the electron density distribution over the Indian equatorial and low latitude ionospheric region during a severe geomagnetic storm

Using a suite of instruments, which included a chain of ground-based dual-frequency GPS receivers, and magnetometers, we have studied the importance of thermospheric meridional wind circulation in controlling the distribution of plasma over the Indian low latitude ionospheric regions during the period of a severe geomagnetic storm. The storm on 15 May 2005, which had its onset coinciding with the local noon time sector for the Indian ionospheric zone, was a severe geomagnetic storm with symH ∼ - 305 nT. A steep increase in the Total Electron Content (TEC) of the ionosphere over the entire Indian ionospheric region was observed on May 15. The enhancement in the TEC was well correlated with the increase in ΔH at the dip-equator due to the prompt penetration of the convection electric field associated with the storm. However, contrary to the previous studies on the storm impact over low latitude regions, a clear signature of disturbance dynamo was absent on the day after the storm. Enhancements in the TEC were observed on May 16, a day after the storm, as well, though the ΔH at the dip-equator was quite below the quite-time mean. The TEC remained well above its monthly mean over the entire Indian ionospheric region during the storm recovery period. We suggest that the TEC enhancement on May 16, even though it looked like due to a prompt penetration effect, was directly related to the compositional disturbances as given by the O/N2 ratio. We conclude that the meridional wind circulation plays an important role in the distribution of electron density over the equatorial and low latitudinal region during the period of a geomagnetic storm.

Ambili, K.; Choudhary, R.;

Published by: Advances in Space Research      Published on: oct

YEAR: 2022     DOI: 10.1016/j.asr.2022.06.027

Compositional disturbances; Equatorial ionosphere; geomagnetic storm; total electron content



  1