Notice:
|
Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2021 |
The Ionosphere at Middle and Low Latitudes Under Geomagnetic Quiet Time of December 2019 The ionospheric electron density shows remarkable day-to-day variability due to solar radiance, geomagnetic activity and lower atmosphere forcing. In this report, we investigated the ionospheric variations at middle and low latitudes during a period under geomagnetic quiet time (Kpmax = 1.7) from November 30 to December 8, 2019. During the quiescent period, the ionosphere is not undisturbed as expected in the Asian-Australian and the American sectors. Total electron content (TEC) has multiple prominent enhancements at middle ... Kuai, Jiawei; Li, Qiaoling; Zhong, Jiahao; Zhou, Xu; Liu, Libo; Yoshikawa, Akimasa; Hu, Lianhuan; Xie, Haiyong; Huang, Chaoyan; Yu, Xumin; Wan, Xin; Cui, Jun; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2021   DOI: 10.1029/2020JA028964 low-latitude electric fields; the ionosphere variations in solar minimum; the ionospheric day-to-day variations; the ionospheric disturbance; the ionospheric variations; topside ionosphere |
2014 |
Ground GNSS Ionosphere Sounding Ionospheric delay will bring errors for GNSS navigation and positioning when the electromagnetic wave signal goes through the earth\textquoterights ionosphere from satellites to receivers. The amount of ionospheric delay of GNSS varies from a few meters to decades of meters, but could reach more than decades of meters during severe ionosphere storms. In contrast, the GNSS ionospheric delay may provide some useful information on the ionosphere, e.g. the total electron content (TEC). In this chapter, the theory and methods ... Jin, Shuanggen; Cardellach, Estel; Xie, Feiqin; Jin, Shuanggen; Cardellach, Estel; Xie, Feiqin; Published by: Published on: YEAR: 2014   DOI: 10.1007/978-94-007-7482-7_4 |
Ground GNSS Ionosphere Sounding Ionospheric delay will bring errors for GNSS navigation and positioning when the electromagnetic wave signal goes through the earth\textquoterights ionosphere from satellites to receivers. The amount of ionospheric delay of GNSS varies from a few meters to decades of meters, but could reach more than decades of meters during severe ionosphere storms. In contrast, the GNSS ionospheric delay may provide some useful information on the ionosphere, e.g. the total electron content (TEC). In this chapter, the theory and methods ... Jin, Shuanggen; Cardellach, Estel; Xie, Feiqin; Jin, Shuanggen; Cardellach, Estel; Xie, Feiqin; Published by: Published on: YEAR: 2014   DOI: 10.1007/978-94-007-7482-7_4 |
1